Zum Hauptinhalt springen

Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL) ; Modelado y simulación de un esquema de modulación espacial adaptativa para la optimización del ancho de banda efectivo sobre luz visible (VLC), utilizando dispositivos de estado sólido para la iluminación (SSL)

Henao Ríos, José León ; Guerrero González, Neil ; et al.
In: CISCO. (2020, Mar.) Cisco annual internet report (2018ˆa€“2023) white paper. [Online]. Available: H. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, “Introduction to indoor networking concepts and challenges in lifi,” Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A190–A203, 2020.; F. Delgado, I. Quintana, J. Rufo, J. Rabadan, C. Quintana, and R. Perez-Jimenez, “Design and implementation of an ethernet-vlc interface for broadcast transmissions,” IEEE Communications letters, vol. 14, no. 12, pp. 1089–1091, 2010.; C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-led visible light communication (vlc) with compact size,” Optics express, vol. 21, no. 22, pp. 26 192–26 197, 2013.; X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A gb/s vlc transmission using hardware preequalization circuit,” IEEE photonics technology letters, vol. 27, no. 18, pp. 1915–1918, 2015.; S. Rajbhandari, H. Chun, G. Faulkner, H. Haas, E. Xie, J. J. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. Oˆa€™Brien, “Neural network-based joint spatial and temporal equalization for mimo-vlc system,” IEEE Photonics Technology Letters, vol. 31, no. 11, pp. 821–824, 2019.; M. L. G. Salmento, G. M. Soares, J. M. Alonso, and H. A. Braga, “A dimmable offline led driver with ook-m-fsk modulation for vlc applications,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5220–5230, 2018.; J.-N. Guo, J. Zhang, G. Xin, and L. Li, “Constant transmission efficiency dimming control scheme for vlc systems,” in Photonics, vol. 8, no. 1. Multidisciplinary Digital Publishing Institute, 2021, p. 7.; Y. Celik, S. Aldirmaz-Colak, and E. Basar, “Flexible quadrature spatial pulse amplitude modulation for vlc systems,” IEEE Systems Journal, 2021.; O. P. Babalola and V. Balyan, “Efficient channel coding for dimmable visible light communications system,” IEEE Access, vol. 8, pp. 215 100–215 106, 2020.; T. Wang, F. Yang, C. Pan, L. Cheng, and J. Song, “Spectral-efficient hybrid dimming scheme for indoor visible light communication: A subcarrier index modulation based approach,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5756–5765, 2019.; R. Ahmad and A. Srivastava, “Papr reduction of ofdm signal through dft precoding and gmsk pulse shaping in indoor vlc,” IEEE Access, vol. 8, pp. 122 092–122 103, 2020.; S. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, and P. C. Sofotasios, “An effective spatial modulation based scheme for indoor vlc systems,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1–11, 2022.; Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.; M. Uysal and H. Nouri, “Optical wireless communications ˆa€” an emerging technology,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–7.; H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 18.; S. Karabetsos, S. Mikroulis, and A. Nassiopoulos, “Radio over fiber for broadband communications: A promising technology for next generation networks,” in Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms. IGI Global, 2009, pp. 80–103.; H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.; J. V. Aravind, S. Kumar, and S. Prince, “Mathematical modelling of underwater wireless optical channel,” in 2018 International Conference on Communication and Signal Processing (ICCSP), 2018, pp. 0776–0780.; G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261, 2020.; M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.; H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE communications surveys & tutorials, vol. 19, no. 1, pp. 57–96, 2016.; W. Wu, M. Chen, Z. Zhang, X. Liu, and Y. Dong, “Overview of deep space laser communication,” Science China Information Sciences, vol. 61, no. 4, pp. 1–12, 2018.; S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, 2008, pp. 82–86.; A.-M. C˘ailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 2017.; N. Kumar, N. Louren¸co, D. Terra, L. N. Alves, and R. L. Aguiar, “Visible light communications in intelligent transportation systems,” in 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 748–753.; T. D. Little, A. Agarwal, J. Chau, M. Figueroa, A. Ganick, J. Lobo, T. Rich, and P. Schimitsch, “Directional communication system for short-range vehicular communications,” in 2010 IEEE Vehicular Networking Conference. IEEE, 2010, pp. 231–238.; E. Eso, O. I. Younus, Z. Ghassemlooy, S. Zvanovec, and M. M. Abadi, “Performances of optical camera-based vehicular communications under turbulence conditions,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020, pp. 1–5.; M. D. Thieu, T. L. Pham, T. Nguyen, and Y. M. Jang, “Optical-roi-signaling for vehicular communications,” IEEE Access, vol. 7, pp. 69 873–69 891, 2019.; T. Garlington, J. Babbitt, and G. Long, “Analysis of free space optics as a transmission technology,” US Army Information Systems Engineering Command, vol. 3, no. 2, 2005.; D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.; S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced optical wireless communication systems. Cambridge university press, 2012.; N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X.-L. Huang, “Visible light communications: demand factors, benefits and opportunities [guest editorial],” IEEE Wireless Communications, vol. 22, no. 2, pp. 5–7, 2015.; H. Haas, L. Yin, Y.Wang, and C. Chen, “What is lifi?” Journal of lightwave technology, vol. 34, no. 6, pp. 1533–1544, 2015.; D. C. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2008, pp. 1–5.; S. Park, D. Jung, H. Shin, D. Shin, Y. Hyun, K. Lee, and Y. Oh, “Information broadcasting system based on visible light signboard,” Proc. Wireless Opt. Commun, vol. 30, pp. 311–313, 2007.; T. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 4, pp. 88–95, 2020.; S. Mali, A. Agarwal, S. K. Singh, and D. D. Pradhan, “Design and implementation of text and audio signal transmission using visible light communication,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(ISMAC). IEEE, 2020, pp. 303–306.; X.-T. Jiang, H. Gao, and P. Li, “Visible light communication audio signal transmission system design,” in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2018, pp. 1–4.; W. Liu, C. Yang, and Q. Yang, “Indoor high-accuracy positioning system using image sensor and visible led lights,” in 2016 Asia Communications and Photonics Conference (ACP), 2016, pp. 1–3.; Y. See and N. M. Noor, “Investigation of indoor positioning system using visible light communication,” in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 186–189.; F. Seguel, P. Palacios-Jativa, C. A. Azurdia-Meza, N. Krommenacker, P. Charpentier, and I. Soto, “Underground mine positioning: A review,” IEEE Sensors Journal, 2021.; I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009.; M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of wifi and lifi toward 5g: concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, 2016.; X. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid lifi and wifi networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398–1420, 2021.; S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid wifi-vlc internet access system,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 569–574.; R. Ahmad, A. Srivastava et al., “Energy-efficient coexistence of lifi users and light enabled iot devices,” IEEE Transactions on Green Communications and Networking, 2021.; M. Kavehrad, “Optical wireless applications: A solution to ease the wireless airwaves spectrum crunch,” in Broadband Access Communication Technologies Vii, vol. 8645. International Society for Optics and Photonics, 2013, p. 86450G.; D. A. Basnayaka and H. Haas, “Hybrid rf and vlc systems: Improving user data rate performance of vlc systems,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015, pp. 1–5.; L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible light communication: concepts, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019.; I. 62471, “Photobiological safety of lamps and lamp systems,” 2006.; M. T. Alresheedi and J. M. Elmirghani, “10 gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1843–1856, 2012.; “Mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” in 2010 Seventh International Conference on Wireless and Optical Communications Networks-(WOCN). IEEE, 2010, pp. 1–6.; Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Optics express, vol. 20, no. 17, pp. 18 861–18 868, 2012.; S. Rajagopal, R. D. Roberts, and S.-K. Lim, “Ieee 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.; J. L. H. Rios, “Experimental validation of inverse mppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.; B. Bai, Z. Xu, and Y. Fan, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp. 1–5.; F. Zafar, D. Karunatilaka, and R. Parthiban, “Dimming schemes for visible light communication: the state of research,” IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, 2015.; P. Cao, J. Chen, and X. You, “An initialization scheme for blind equalization in vlc systems,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017, pp. 1–3.; K. Werfli, P. A. Haigh, Z. Ghassemlooy, P. Chvojka, S. Zvanovec, S. Rajbhandari, and S. Long, “Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited vlc systems,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015, pp. 6–10.; H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc: Beyond pointto-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98–105, 2014.; X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750mbit/s visible light communications employing 64qam-ofdm based on amplitude equalization circuit,” in 2015 optical fiber communications conference and exhibition (OFC). IEEE, 2015, pp. 1–3.; G. Zhang, X. Hong, C. Fei, and X. Hong, “Sparsity-aware nonlinear equalization with greedy algorithms for led-based visible light communication systems,” Journal of Lightwave Technology, vol. 37, no. 20, pp. 5273–5281, 2019.; R. Martinek, L. Danys, R. Jaros, D. Mozny, P. Siska, and J. Latal, “Vlc channel equalization simulator based on lms algorithm and virtual instrumentation,” in 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2019, pp. 1–6.; J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.; Y. Yang, Z. Zeng, J. Cheng, and C. Guo, “An enhanced dco-ofdm scheme for dimming control in visible light communication systems,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–13, 2016.; Y. Hong, J. Xu, and L.-K. Chen, “Experimental investigation of multi-band oct precoding for ofdm-based visible light communications,” Opt. Express, vol. 25, no. 11, pp. 12 908–12 914, May 2017.; A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical mimo-ofdm with generalized led index modulation,” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429–3441, 2017.; K. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation of carrierless amplitude and phase modulation in visible light communication,” IEEE Access, vol. 6, pp. 60 532–60 546, 2018.; I. Din and H. Kim, “Energy-efficient brightness control and data transmission for visible light communication,” IEEE photonics technology letters, vol. 26, no. 8, pp. 781–784, 2014.; G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Optics express, vol. 20, no. 26, pp. B501–B506, 2012.; S. H. Younus, A. A. Al-Hameed, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, “Wdm for multi-user indoor vlc systems with scm,” IET Communications, vol. 13, no. 18, pp. 3003–3011, 2019.; Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in 2016 IEEE 83rd vehicular technology conference (VTC Spring). IEEE, 2016, pp. 1–5.; K. P. Pujapanda, “Lifi integrated to power-lines for smart illumination cum communication,” in 2013 International Conference on Communication Systems and Network Technologies. IEEE, 2013, pp. 875–878.; G. Sun, W. Zhao, R. Wang, and X. Li, “Design of ethernet-vlc data conversion system based on fpga,” International Journal of Computer Theory and Engineering, vol. 12, no. 3, 2020.; Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications. CRC press, 2017.; X. Wang, L. Wang, K. Jian, C. Wang, and C. P. Yue, “A rgb led pam-4 visible light communication transmitter based on a system design with equalization,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020, pp. 798–801.; C. Min, X. Chen, X. Mao, X. Li, T. Pan, Q. Sun, and H. Chen, “A novel method for constructing vlc equalizer with active-passive hybrid network,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–10, 2020.; N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 mb/s by a blue led, 600 mb/s by a red led, and 520 mb/s by a green led based on simple ook-nrz modulation of a commercially available rgb-type white led using pre-emphasis and postequalizing techniques,” in 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014, pp. 1–3.; H. Li, X. Chen, J. Guo, and H. Chen, “A 550 mbit/s real-time visible light communication system based on phosphorescent white light led for practical high-speed low-complexity application,” Optics express, vol. 22, no. 22, pp. 27 203–27 213, 2014.; R. Kisacik, M. Yagan, M. Uysal, A. Pusane, and A. Yalcinkaya, “A new led response model and its application to pre-equalization in vlc systems,” IEEE Photonics Technology Letters, vol. 33, no. 17, pp. 955–958, 2021.; M. Ataee, S. M. S. Sadough, and Z. Ghassemlooy, “Adaptive equalization for visible light communications with power over ethernet backhaul,” in 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC). IEEE, 2020, pp. 1–5.; J. Gancarz, H. Elgala, and T. D. Little, “Impact of lighting requirements on vlc systems,” IEEE Communications Magazine, vol. 51, no. 12, pp. 34–41, 2013.; A. Dix, J. Finlay, G. D. Abowd, and R. Beale, “Human-computer interaction,” Harlow ua, 2000.; J. A. Jacko, “Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications,” 2012.; J. K. Kwon, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455–1457, 2010.; T. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with laco-ofdm in vlc,” IEEE Access, vol. 6, pp. 41 153–41 162, 2018.; Y. Zuo and J. Zhang, “A novel coding based dimming scheme with constant transmission efficiency in vlc systems,” Applied Sciences, vol. 9, no. 4, 2019. [Online]. Available: D.-F. Zhang, Y.-J. Zhu, and Y.-Y. Zhang, “Multi-led phase-shifted ook modulation based visible light communication systems,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2251–2254, 2013.; C.Wang, Y. Yang, C. Guo, Z. Zeng, and C. Feng, “Generalized dimming control scheme with optimal dimming control pattern for vlc,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.; S. He, G. Ren, L. Wu, Z. Sun, and Y. Zhao, “Flicker mitigation and dimming control analyze of duty cycle fixed-mvpm for indoor vlc system,” in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 6–9.; J.-N. Guo, J. Zhang, Y.-Y. Zhang, G. Xin, and L. Li, “Constant weight space-time codes for dimmable mimo-vlc systems,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–15, 2020.; J. Henao-Rios, D. Marquez-Viloria, and N. Guerrero-Gonz´alez, “Real time implementation of a hybrid differential manchester-pwm encoding for constant data rate under variable brightness in vlc systems,” in 2020 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2020, pp. 1–5.; G. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge University Press, 2016.; R. B. Nunes, A. Shahpari, J. A. L. Silva, M. Lima, P. S. B. de Andr˜A©, and M. E. V. Segatto, “Experimental demonstration of a 33.5-gb/s ofdm-based pon with subcarrier pre-emphasis,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 860–863, 2016.; E. Basar, “Index modulation techniques for 5g wireless networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 168–175, 2016.; E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, 2017.; K. M. vd Zwaag, J. L. Neves, H. R. Rocha, M. E. Segatto, and J. A. Silva, “Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals,” Optics Communications, vol. 441, pp. 14 – 20, 2019.; F. T. Monteiro, W. S. Costa, J. L. Neves, D. M. Silva, H. R. Rocha, E. O. Salles, and J. A. Silva, “Experimental evaluation of pulse shaping based 5g multicarrier modulation formats in visible light communication systems,” Optics Communications, vol. 457, p. 124693, 2020.; Q. Wang, Z. Wang, L. Dai, and J. Quan, “Dimmable visible light communications based on multilayer aco-ofdm,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–11, 2016.; A. W. Azim, Y. Le Guennec, and G. Maury, “Spectrally augmented hartley transform precoded asymmetrically clipped optical ofdm for vlc,” IEEE Photonics Technology Letters, vol. 30, no. 23, pp. 2029–2032, 2018.; C. Guerra-Y´anez, S. Zv´anovec, and Z. Ghassemlooy, “Experimental evaluation of a hermite function-based multicarrier scheme for vlc,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–4.; N. Bamiedakis, R. Penty, and I. White, “Carrierless amplitude and phase modulation in wireless visible light communication systems,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2169, p. 20190181, 2020.; S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband supernyquist cap16 vlc system employing a joint mimo equalizer,” Optics express, vol. 26, no. 12, pp. 15 718–15 725, 2018.; P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Nonorthogonal multi-band cap for highly spectrally efficient vlc systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–6.; P. A. Haigh, P. Chvojka, A. Minotto, A. Burton, P. Murto, E. Wang, Z. Ghassemlooy, S. Zvanovec, F. Cacialli, and I. Darwazeh, “Hybrid super-nyquist cap modulation based vlc with low bandwidth polymer leds,” in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.; K. O. Akande and W. O. Popoola, “Mimo techniques for carrierless amplitude and phase modulation in visible light communication,” IEEE Communications Letters, vol. 22, no. 5, pp. 974–977, 2018.; H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “Led based wavelength division multiplexed 10 gb/s visible light communications,” Journal of lightwave technology, vol. 34, no. 13, pp. 3047–3052, 2016.; J. L. H. Rios, N. G. Gonz´alez, M. R. Ribeiro, and J. A. Silva, “Experimental validation of a three-dimensional modulation format for data transmission in rgb visible light communication systems,” IET Communications, vol. 15, no. 2, pp. 279–288, 2021.; A. T. Hussein and J. M. Elmirghani, “10 gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes,” Journal of Optical Communications and Networking, vol. 7, no. 8, pp. 718–735, 2015.; R. Bian, I. Tavakkolnia, and H. Haas, “15.73 gb/s visible light communication with off-the-shelf leds,” Journal of Lightwave Technology, vol. 37, no. 10, pp. 2418–2424, 2019.; Y. Wang, Y. Zhou, T. Gui, K. Zhong, X. Zhou, L. Wang, A. P. T. Lau, C. Lu, and N. Chi, “Efficient mmse-sqrd-based mimo decoder for sefdm-based 2.4-gb/s-spectrumcompressed wdm vlc system,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–9, 2016.; J. Zhu, L. Mu, and X. Zhang, “Pwm-based dimmable hybrid optical ofdm for visiblelight communications,” IET Communications, vol. 14, no. 6, pp. 930–936, 2020.; M. Mohammedi Merah, H. Guan, and L. Chassagne, “Experimental multi-user visible light communication attocell using multiband carrierless amplitude and phase modulation,” IEEE Access, vol. 7, pp. 12 742–12 754, 2019.; I. Newton, Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. Sam Smith & Benj Walford Printers to the Royal Society, 1704.; H. Christiaan, Trait´e de la Lumi`ere: O`u Sont Expliqu´es les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction. Pieter van der Aa, 1690.; Y. Thomas, The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London, 1804.; M. García Castañeda and J. Ewert De-Geus, Introducción a la física moderna. UNIVERSIDAD NACIONAL DE COLOMBIA,, 2003, no. 539 G164i Ej. 1.; D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.; A. F. Rex, R. Wolfson, and M. M. Romo, Fundamentos de f´ısica. Addison Wesley, 2011.; W. Doherty and R. Joos, “The pin diode circuit designersˆa€™ handbook,” Microsemi Corporation, vol. 1, pp. 1–137, 1998. [123] I. Yun, Photodiodes: From Fundamentals to Applications. BoD–Books on Demand, 2012.; J. Graeme, Photodiode amplifiers: op amp solutions. McGraw-Hill, Inc., 1995.; G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012, vol. 222.; R. M. Gagliardi and S. Karp, “Optical communications,” New York, 1976.; M. Petit, L. Michez, J.-M. Raimundo, and P. Dumas, “Electrical and optical measurements of the bandgap energy of a light-emitting diode,” Physics Education, vol. 51, no. 2, p. 025003, 2016.; A. Einstein and F. A. Davis, The principle of relativity. Courier Corporation, 2013.; N. Chi, LED-based visible light Communications. Springer, 2018.; E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.; J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.; S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.” Optometry and vision science: official publication of the American Academy of Optometry, vol. 68, no. 8, pp. 645–662, 1991.; K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE photonics technology letters, vol. 23, no. 16, pp. 1136–1138, 2011.; H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “Pwm-based ppm format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–5.; F. Knobloch, “Noncoherent dimming frequency shift on-off keying scheme for low data rate optical street lighting communication,” ICTON 2015, p. Mo.B2.5, 2015.; C.-S. A. Gong, Y.-C. Lee, J.-L. Lai, C.-H. Yu, L. R. Huang, and C.-Y. Yang, “The highefficiency led driver for visible light communication applications,” Scientific reports, vol. 6, p. 30991, 2016.; B. Aydin and C¸ Duman, “Comparison of ook-rz and 4-ppm performances in li-fi systems using led arrays,” Optics & Laser Technology, vol. 153, p. 108247, 2022.; A. Pradana, N. Ahmadi, T. Adiono, W. A. Cahyadi, and Y.-H. Chung, “Vlc physical layer design based on pulse position modulation (ppm) for stable illumination,” in 2015 international symposium on intelligent signal processing and communication systems (ISPACS). IEEE, 2015, pp. 368–373.; J. R. Barry, Wireless infrared communications. Springer Science & Business Media, 2012, vol. 280.; S. N. Ismail and M. H. Salih, “A review of visible light communication (vlc) technology,” in AIP Conference Proceedings, vol. 2213, no. 1. AIP Publishing LLC, 2020, p. 020289.; D.-s. Shiu and J. M. Kahn, “Differential pulse-position modulation for power-efficient optical communication,” IEEE transactions on communications, vol. 47, no. 8, pp. 1201–1210, 1999.; V. Dixit and A. Kumar, “Performance analysis of l-ppm modulated nlos-vlc system with perfect and imperfect csi,” Journal of Optics, vol. 23, no. 1, p. 015702, 2020.; G. Lee and G. Schroeder, “Optical pulse position modulation with multiple positions per pulsewidth,” IEEE Transactions on Communications, vol. 25, no. 3, pp. 360–364, 1977.; C. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1313–1326, 1994.; X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Optics Express, vol. 19, no. 26, pp. B868–B881, 2011.; Y. Akaiwa, “Digital modulation/demodulation for mobile radio communication,” 2015.; L. Litwin, “An introduction to multicarrier modulation,” IEEE potentials, vol. 19, no. 2, pp. 36–38, 2000.; A. A. Hajomer, X. Yang, and W. Hu, “Secure ofdm transmission precoded by chaotic discrete hartley transform,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–9, 2017.; I. Mapfumo, Performance of asymmetrically clipped optical OFDM and DC-biased optical OFDM based on fast Fourier transform/discrete Hartley transform for powerline communication-visible light communication systems under impulsive noise. University of Johannesburg (South Africa), 2020.; A. Goldsmith, Wireless communications. Cambridge university press, 2005.; G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m),” Opt. Express, vol. 23, no. 12, pp. 15 700–15 705, Jun 2015.; K. Liang, C.-W. Chow, and Y. Liu, “Rgb visible light communication using mobilephone camera and multi-input multi-output,” Opt. Express, vol. 24, no. 9, pp. 9383–9388, May 2016.; C.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m rgb visible light communication transmission based on a cmos image sensor,” Opt. Express, vol. 26, no. 6, pp. 7079–7084, Mar 2018.; P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of rgb led-based optical camera communications,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–12, 2015.; M. S. Moreolo, R. Mu˜noz, and G. Junyent, “Novel power efficient optical ofdm based on hartley transform for intensity-modulated direct-detection systems,” Journal of lightwave Technology, vol. 28, no. 5, pp. 798–805, 2010.; R. N. Bracewell, “Discrete hartley transform,” JOSA, vol. 73, no. 12, pp. 1832–1835, 1983.; X. Li, R. Mardling, and J. Armstrong, “Channel capacity of im/dd optical communication systems and of aco-ofdm,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 2128–2133.; Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: modulation and signal processing. John Wiley & Sons, 2017.; J. Tang and L. Zhang, “Efficient real-fourier domain-based color shift keying ofdm implemented with hartley transform for visible light communication system,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017, pp. 1–5.; Y. Cao, X. Zhou, J. Sun, W. Zhang, and C.-X. Wang, “Optical spatial modulation with dht-based ofdm in visible light communication systems,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017, pp. 1–5.; J. R. B. J. M. Kahn, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.; Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications system and channel modelling with Matlab. CRC press, 2019. [163] R. Mesleh, H. Elgala, and H. Haas, “Optical spatial modulation,” Journal of Optical Communications and Networking, vol. 3, no. 3, pp. 234–244, 2011.; L. R. M. Castor, R. Natale, J. A. L. Silva, and M. E. V. Segatto, “Experimental investigation of broadband power line communication modems for onshore oil gas industry: A preliminary analysis,” in 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 244–248.; L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational complexity analysis of advanced physical layers based on multicarrier modulation,” in 2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.; J. L. H. Rios, N. G. Gonzalez, and J. C. G. ´Alvarez, “Experimental validation of inverse m-ppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 19, no. 02, pp. 280–287, 2021.; S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1385–1399, 2003.; S. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless optical channels,” International Journal of Communication Systems, vol. 18, no. 3, pp. 205–228, 2005.; P. Fahamuel, J. Thompson, and H. Haas, “Study, analysis and application of optical ofdm, single carrier (sc) and mimo in intensity modulation direct detection (im/dd),” 2013.; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia;
Online Hochschulschrift

Titel:
Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL) ; Modelado y simulación de un esquema de modulación espacial adaptativa para la optimización del ancho de banda efectivo sobre luz visible (VLC), utilizando dispositivos de estado sólido para la iluminación (SSL)
Autor/in / Beteiligte Person: Henao Ríos, José León ; Guerrero González, Neil ; Garcia-Alvarez, Julio Cesar ; Propagación Electromagnética Aplicada (Propela) ; Henao Rios, Jose Leon 0000-0002-3119-9775
Link:
Quelle: CISCO. (2020, Mar.) Cisco annual internet report (2018ˆa€“2023) white paper. [Online]. Available: H. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, “Introduction to indoor networking concepts and challenges in lifi,” Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A190–A203, 2020.; F. Delgado, I. Quintana, J. Rufo, J. Rabadan, C. Quintana, and R. Perez-Jimenez, “Design and implementation of an ethernet-vlc interface for broadcast transmissions,” IEEE Communications letters, vol. 14, no. 12, pp. 1089–1091, 2010.; C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-led visible light communication (vlc) with compact size,” Optics express, vol. 21, no. 22, pp. 26 192–26 197, 2013.; X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A gb/s vlc transmission using hardware preequalization circuit,” IEEE photonics technology letters, vol. 27, no. 18, pp. 1915–1918, 2015.; S. Rajbhandari, H. Chun, G. Faulkner, H. Haas, E. Xie, J. J. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. Oˆa€™Brien, “Neural network-based joint spatial and temporal equalization for mimo-vlc system,” IEEE Photonics Technology Letters, vol. 31, no. 11, pp. 821–824, 2019.; M. L. G. Salmento, G. M. Soares, J. M. Alonso, and H. A. Braga, “A dimmable offline led driver with ook-m-fsk modulation for vlc applications,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5220–5230, 2018.; J.-N. Guo, J. Zhang, G. Xin, and L. Li, “Constant transmission efficiency dimming control scheme for vlc systems,” in Photonics, vol. 8, no. 1. Multidisciplinary Digital Publishing Institute, 2021, p. 7.; Y. Celik, S. Aldirmaz-Colak, and E. Basar, “Flexible quadrature spatial pulse amplitude modulation for vlc systems,” IEEE Systems Journal, 2021.; O. P. Babalola and V. Balyan, “Efficient channel coding for dimmable visible light communications system,” IEEE Access, vol. 8, pp. 215 100–215 106, 2020.; T. Wang, F. Yang, C. Pan, L. Cheng, and J. Song, “Spectral-efficient hybrid dimming scheme for indoor visible light communication: A subcarrier index modulation based approach,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5756–5765, 2019.; R. Ahmad and A. Srivastava, “Papr reduction of ofdm signal through dft precoding and gmsk pulse shaping in indoor vlc,” IEEE Access, vol. 8, pp. 122 092–122 103, 2020.; S. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, and P. C. Sofotasios, “An effective spatial modulation based scheme for indoor vlc systems,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1–11, 2022.; Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.; M. Uysal and H. Nouri, “Optical wireless communications ˆa€” an emerging technology,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–7.; H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 18.; S. Karabetsos, S. Mikroulis, and A. Nassiopoulos, “Radio over fiber for broadband communications: A promising technology for next generation networks,” in Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms. IGI Global, 2009, pp. 80–103.; H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.; J. V. Aravind, S. Kumar, and S. Prince, “Mathematical modelling of underwater wireless optical channel,” in 2018 International Conference on Communication and Signal Processing (ICCSP), 2018, pp. 0776–0780.; G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261, 2020.; M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.; H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE communications surveys & tutorials, vol. 19, no. 1, pp. 57–96, 2016.; W. Wu, M. Chen, Z. Zhang, X. Liu, and Y. Dong, “Overview of deep space laser communication,” Science China Information Sciences, vol. 61, no. 4, pp. 1–12, 2018.; S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, 2008, pp. 82–86.; A.-M. C˘ailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 2017.; N. Kumar, N. Louren¸co, D. Terra, L. N. Alves, and R. L. Aguiar, “Visible light communications in intelligent transportation systems,” in 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 748–753.; T. D. Little, A. Agarwal, J. Chau, M. Figueroa, A. Ganick, J. Lobo, T. Rich, and P. Schimitsch, “Directional communication system for short-range vehicular communications,” in 2010 IEEE Vehicular Networking Conference. IEEE, 2010, pp. 231–238.; E. Eso, O. I. Younus, Z. Ghassemlooy, S. Zvanovec, and M. M. Abadi, “Performances of optical camera-based vehicular communications under turbulence conditions,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020, pp. 1–5.; M. D. Thieu, T. L. Pham, T. Nguyen, and Y. M. Jang, “Optical-roi-signaling for vehicular communications,” IEEE Access, vol. 7, pp. 69 873–69 891, 2019.; T. Garlington, J. Babbitt, and G. Long, “Analysis of free space optics as a transmission technology,” US Army Information Systems Engineering Command, vol. 3, no. 2, 2005.; D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.; S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced optical wireless communication systems. Cambridge university press, 2012.; N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X.-L. Huang, “Visible light communications: demand factors, benefits and opportunities [guest editorial],” IEEE Wireless Communications, vol. 22, no. 2, pp. 5–7, 2015.; H. Haas, L. Yin, Y.Wang, and C. Chen, “What is lifi?” Journal of lightwave technology, vol. 34, no. 6, pp. 1533–1544, 2015.; D. C. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2008, pp. 1–5.; S. Park, D. Jung, H. Shin, D. Shin, Y. Hyun, K. Lee, and Y. Oh, “Information broadcasting system based on visible light signboard,” Proc. Wireless Opt. Commun, vol. 30, pp. 311–313, 2007.; T. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 4, pp. 88–95, 2020.; S. Mali, A. Agarwal, S. K. Singh, and D. D. Pradhan, “Design and implementation of text and audio signal transmission using visible light communication,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(ISMAC). IEEE, 2020, pp. 303–306.; X.-T. Jiang, H. Gao, and P. Li, “Visible light communication audio signal transmission system design,” in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2018, pp. 1–4.; W. Liu, C. Yang, and Q. Yang, “Indoor high-accuracy positioning system using image sensor and visible led lights,” in 2016 Asia Communications and Photonics Conference (ACP), 2016, pp. 1–3.; Y. See and N. M. Noor, “Investigation of indoor positioning system using visible light communication,” in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 186–189.; F. Seguel, P. Palacios-Jativa, C. A. Azurdia-Meza, N. Krommenacker, P. Charpentier, and I. Soto, “Underground mine positioning: A review,” IEEE Sensors Journal, 2021.; I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009.; M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of wifi and lifi toward 5g: concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, 2016.; X. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid lifi and wifi networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398–1420, 2021.; S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid wifi-vlc internet access system,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 569–574.; R. Ahmad, A. Srivastava et al., “Energy-efficient coexistence of lifi users and light enabled iot devices,” IEEE Transactions on Green Communications and Networking, 2021.; M. Kavehrad, “Optical wireless applications: A solution to ease the wireless airwaves spectrum crunch,” in Broadband Access Communication Technologies Vii, vol. 8645. International Society for Optics and Photonics, 2013, p. 86450G.; D. A. Basnayaka and H. Haas, “Hybrid rf and vlc systems: Improving user data rate performance of vlc systems,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015, pp. 1–5.; L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible light communication: concepts, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019.; I. 62471, “Photobiological safety of lamps and lamp systems,” 2006.; M. T. Alresheedi and J. M. Elmirghani, “10 gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1843–1856, 2012.; “Mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” in 2010 Seventh International Conference on Wireless and Optical Communications Networks-(WOCN). IEEE, 2010, pp. 1–6.; Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Optics express, vol. 20, no. 17, pp. 18 861–18 868, 2012.; S. Rajagopal, R. D. Roberts, and S.-K. Lim, “Ieee 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.; J. L. H. Rios, “Experimental validation of inverse mppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.; B. Bai, Z. Xu, and Y. Fan, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp. 1–5.; F. Zafar, D. Karunatilaka, and R. Parthiban, “Dimming schemes for visible light communication: the state of research,” IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, 2015.; P. Cao, J. Chen, and X. You, “An initialization scheme for blind equalization in vlc systems,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017, pp. 1–3.; K. Werfli, P. A. Haigh, Z. Ghassemlooy, P. Chvojka, S. Zvanovec, S. Rajbhandari, and S. Long, “Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited vlc systems,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015, pp. 6–10.; H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc: Beyond pointto-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98–105, 2014.; X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750mbit/s visible light communications employing 64qam-ofdm based on amplitude equalization circuit,” in 2015 optical fiber communications conference and exhibition (OFC). IEEE, 2015, pp. 1–3.; G. Zhang, X. Hong, C. Fei, and X. Hong, “Sparsity-aware nonlinear equalization with greedy algorithms for led-based visible light communication systems,” Journal of Lightwave Technology, vol. 37, no. 20, pp. 5273–5281, 2019.; R. Martinek, L. Danys, R. Jaros, D. Mozny, P. Siska, and J. Latal, “Vlc channel equalization simulator based on lms algorithm and virtual instrumentation,” in 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2019, pp. 1–6.; J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.; Y. Yang, Z. Zeng, J. Cheng, and C. Guo, “An enhanced dco-ofdm scheme for dimming control in visible light communication systems,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–13, 2016.; Y. Hong, J. Xu, and L.-K. Chen, “Experimental investigation of multi-band oct precoding for ofdm-based visible light communications,” Opt. Express, vol. 25, no. 11, pp. 12 908–12 914, May 2017.; A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical mimo-ofdm with generalized led index modulation,” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429–3441, 2017.; K. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation of carrierless amplitude and phase modulation in visible light communication,” IEEE Access, vol. 6, pp. 60 532–60 546, 2018.; I. Din and H. Kim, “Energy-efficient brightness control and data transmission for visible light communication,” IEEE photonics technology letters, vol. 26, no. 8, pp. 781–784, 2014.; G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Optics express, vol. 20, no. 26, pp. B501–B506, 2012.; S. H. Younus, A. A. Al-Hameed, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, “Wdm for multi-user indoor vlc systems with scm,” IET Communications, vol. 13, no. 18, pp. 3003–3011, 2019.; Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in 2016 IEEE 83rd vehicular technology conference (VTC Spring). IEEE, 2016, pp. 1–5.; K. P. Pujapanda, “Lifi integrated to power-lines for smart illumination cum communication,” in 2013 International Conference on Communication Systems and Network Technologies. IEEE, 2013, pp. 875–878.; G. Sun, W. Zhao, R. Wang, and X. Li, “Design of ethernet-vlc data conversion system based on fpga,” International Journal of Computer Theory and Engineering, vol. 12, no. 3, 2020.; Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications. CRC press, 2017.; X. Wang, L. Wang, K. Jian, C. Wang, and C. P. Yue, “A rgb led pam-4 visible light communication transmitter based on a system design with equalization,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020, pp. 798–801.; C. Min, X. Chen, X. Mao, X. Li, T. Pan, Q. Sun, and H. Chen, “A novel method for constructing vlc equalizer with active-passive hybrid network,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–10, 2020.; N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 mb/s by a blue led, 600 mb/s by a red led, and 520 mb/s by a green led based on simple ook-nrz modulation of a commercially available rgb-type white led using pre-emphasis and postequalizing techniques,” in 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014, pp. 1–3.; H. Li, X. Chen, J. Guo, and H. Chen, “A 550 mbit/s real-time visible light communication system based on phosphorescent white light led for practical high-speed low-complexity application,” Optics express, vol. 22, no. 22, pp. 27 203–27 213, 2014.; R. Kisacik, M. Yagan, M. Uysal, A. Pusane, and A. Yalcinkaya, “A new led response model and its application to pre-equalization in vlc systems,” IEEE Photonics Technology Letters, vol. 33, no. 17, pp. 955–958, 2021.; M. Ataee, S. M. S. Sadough, and Z. Ghassemlooy, “Adaptive equalization for visible light communications with power over ethernet backhaul,” in 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC). IEEE, 2020, pp. 1–5.; J. Gancarz, H. Elgala, and T. D. Little, “Impact of lighting requirements on vlc systems,” IEEE Communications Magazine, vol. 51, no. 12, pp. 34–41, 2013.; A. Dix, J. Finlay, G. D. Abowd, and R. Beale, “Human-computer interaction,” Harlow ua, 2000.; J. A. Jacko, “Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications,” 2012.; J. K. Kwon, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455–1457, 2010.; T. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with laco-ofdm in vlc,” IEEE Access, vol. 6, pp. 41 153–41 162, 2018.; Y. Zuo and J. Zhang, “A novel coding based dimming scheme with constant transmission efficiency in vlc systems,” Applied Sciences, vol. 9, no. 4, 2019. [Online]. Available: D.-F. Zhang, Y.-J. Zhu, and Y.-Y. Zhang, “Multi-led phase-shifted ook modulation based visible light communication systems,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2251–2254, 2013.; C.Wang, Y. Yang, C. Guo, Z. Zeng, and C. Feng, “Generalized dimming control scheme with optimal dimming control pattern for vlc,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.; S. He, G. Ren, L. Wu, Z. Sun, and Y. Zhao, “Flicker mitigation and dimming control analyze of duty cycle fixed-mvpm for indoor vlc system,” in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 6–9.; J.-N. Guo, J. Zhang, Y.-Y. Zhang, G. Xin, and L. Li, “Constant weight space-time codes for dimmable mimo-vlc systems,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–15, 2020.; J. Henao-Rios, D. Marquez-Viloria, and N. Guerrero-Gonz´alez, “Real time implementation of a hybrid differential manchester-pwm encoding for constant data rate under variable brightness in vlc systems,” in 2020 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2020, pp. 1–5.; G. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge University Press, 2016.; R. B. Nunes, A. Shahpari, J. A. L. Silva, M. Lima, P. S. B. de Andr˜A©, and M. E. V. Segatto, “Experimental demonstration of a 33.5-gb/s ofdm-based pon with subcarrier pre-emphasis,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 860–863, 2016.; E. Basar, “Index modulation techniques for 5g wireless networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 168–175, 2016.; E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, 2017.; K. M. vd Zwaag, J. L. Neves, H. R. Rocha, M. E. Segatto, and J. A. Silva, “Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals,” Optics Communications, vol. 441, pp. 14 – 20, 2019.; F. T. Monteiro, W. S. Costa, J. L. Neves, D. M. Silva, H. R. Rocha, E. O. Salles, and J. A. Silva, “Experimental evaluation of pulse shaping based 5g multicarrier modulation formats in visible light communication systems,” Optics Communications, vol. 457, p. 124693, 2020.; Q. Wang, Z. Wang, L. Dai, and J. Quan, “Dimmable visible light communications based on multilayer aco-ofdm,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–11, 2016.; A. W. Azim, Y. Le Guennec, and G. Maury, “Spectrally augmented hartley transform precoded asymmetrically clipped optical ofdm for vlc,” IEEE Photonics Technology Letters, vol. 30, no. 23, pp. 2029–2032, 2018.; C. Guerra-Y´anez, S. Zv´anovec, and Z. Ghassemlooy, “Experimental evaluation of a hermite function-based multicarrier scheme for vlc,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–4.; N. Bamiedakis, R. Penty, and I. White, “Carrierless amplitude and phase modulation in wireless visible light communication systems,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2169, p. 20190181, 2020.; S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband supernyquist cap16 vlc system employing a joint mimo equalizer,” Optics express, vol. 26, no. 12, pp. 15 718–15 725, 2018.; P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Nonorthogonal multi-band cap for highly spectrally efficient vlc systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–6.; P. A. Haigh, P. Chvojka, A. Minotto, A. Burton, P. Murto, E. Wang, Z. Ghassemlooy, S. Zvanovec, F. Cacialli, and I. Darwazeh, “Hybrid super-nyquist cap modulation based vlc with low bandwidth polymer leds,” in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.; K. O. Akande and W. O. Popoola, “Mimo techniques for carrierless amplitude and phase modulation in visible light communication,” IEEE Communications Letters, vol. 22, no. 5, pp. 974–977, 2018.; H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “Led based wavelength division multiplexed 10 gb/s visible light communications,” Journal of lightwave technology, vol. 34, no. 13, pp. 3047–3052, 2016.; J. L. H. Rios, N. G. Gonz´alez, M. R. Ribeiro, and J. A. Silva, “Experimental validation of a three-dimensional modulation format for data transmission in rgb visible light communication systems,” IET Communications, vol. 15, no. 2, pp. 279–288, 2021.; A. T. Hussein and J. M. Elmirghani, “10 gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes,” Journal of Optical Communications and Networking, vol. 7, no. 8, pp. 718–735, 2015.; R. Bian, I. Tavakkolnia, and H. Haas, “15.73 gb/s visible light communication with off-the-shelf leds,” Journal of Lightwave Technology, vol. 37, no. 10, pp. 2418–2424, 2019.; Y. Wang, Y. Zhou, T. Gui, K. Zhong, X. Zhou, L. Wang, A. P. T. Lau, C. Lu, and N. Chi, “Efficient mmse-sqrd-based mimo decoder for sefdm-based 2.4-gb/s-spectrumcompressed wdm vlc system,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–9, 2016.; J. Zhu, L. Mu, and X. Zhang, “Pwm-based dimmable hybrid optical ofdm for visiblelight communications,” IET Communications, vol. 14, no. 6, pp. 930–936, 2020.; M. Mohammedi Merah, H. Guan, and L. Chassagne, “Experimental multi-user visible light communication attocell using multiband carrierless amplitude and phase modulation,” IEEE Access, vol. 7, pp. 12 742–12 754, 2019.; I. Newton, Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. Sam Smith & Benj Walford Printers to the Royal Society, 1704.; H. Christiaan, Trait´e de la Lumi`ere: O`u Sont Expliqu´es les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction. Pieter van der Aa, 1690.; Y. Thomas, The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London, 1804.; M. García Castañeda and J. Ewert De-Geus, Introducción a la física moderna. UNIVERSIDAD NACIONAL DE COLOMBIA,, 2003, no. 539 G164i Ej. 1.; D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.; A. F. Rex, R. Wolfson, and M. M. Romo, Fundamentos de f´ısica. Addison Wesley, 2011.; W. Doherty and R. Joos, “The pin diode circuit designersˆa€™ handbook,” Microsemi Corporation, vol. 1, pp. 1–137, 1998. [123] I. Yun, Photodiodes: From Fundamentals to Applications. BoD–Books on Demand, 2012.; J. Graeme, Photodiode amplifiers: op amp solutions. McGraw-Hill, Inc., 1995.; G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012, vol. 222.; R. M. Gagliardi and S. Karp, “Optical communications,” New York, 1976.; M. Petit, L. Michez, J.-M. Raimundo, and P. Dumas, “Electrical and optical measurements of the bandgap energy of a light-emitting diode,” Physics Education, vol. 51, no. 2, p. 025003, 2016.; A. Einstein and F. A. Davis, The principle of relativity. Courier Corporation, 2013.; N. Chi, LED-based visible light Communications. Springer, 2018.; E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.; J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.; S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.” Optometry and vision science: official publication of the American Academy of Optometry, vol. 68, no. 8, pp. 645–662, 1991.; K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE photonics technology letters, vol. 23, no. 16, pp. 1136–1138, 2011.; H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “Pwm-based ppm format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–5.; F. Knobloch, “Noncoherent dimming frequency shift on-off keying scheme for low data rate optical street lighting communication,” ICTON 2015, p. Mo.B2.5, 2015.; C.-S. A. Gong, Y.-C. Lee, J.-L. Lai, C.-H. Yu, L. R. Huang, and C.-Y. Yang, “The highefficiency led driver for visible light communication applications,” Scientific reports, vol. 6, p. 30991, 2016.; B. Aydin and C¸ Duman, “Comparison of ook-rz and 4-ppm performances in li-fi systems using led arrays,” Optics & Laser Technology, vol. 153, p. 108247, 2022.; A. Pradana, N. Ahmadi, T. Adiono, W. A. Cahyadi, and Y.-H. Chung, “Vlc physical layer design based on pulse position modulation (ppm) for stable illumination,” in 2015 international symposium on intelligent signal processing and communication systems (ISPACS). IEEE, 2015, pp. 368–373.; J. R. Barry, Wireless infrared communications. Springer Science & Business Media, 2012, vol. 280.; S. N. Ismail and M. H. Salih, “A review of visible light communication (vlc) technology,” in AIP Conference Proceedings, vol. 2213, no. 1. AIP Publishing LLC, 2020, p. 020289.; D.-s. Shiu and J. M. Kahn, “Differential pulse-position modulation for power-efficient optical communication,” IEEE transactions on communications, vol. 47, no. 8, pp. 1201–1210, 1999.; V. Dixit and A. Kumar, “Performance analysis of l-ppm modulated nlos-vlc system with perfect and imperfect csi,” Journal of Optics, vol. 23, no. 1, p. 015702, 2020.; G. Lee and G. Schroeder, “Optical pulse position modulation with multiple positions per pulsewidth,” IEEE Transactions on Communications, vol. 25, no. 3, pp. 360–364, 1977.; C. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1313–1326, 1994.; X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Optics Express, vol. 19, no. 26, pp. B868–B881, 2011.; Y. Akaiwa, “Digital modulation/demodulation for mobile radio communication,” 2015.; L. Litwin, “An introduction to multicarrier modulation,” IEEE potentials, vol. 19, no. 2, pp. 36–38, 2000.; A. A. Hajomer, X. Yang, and W. Hu, “Secure ofdm transmission precoded by chaotic discrete hartley transform,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–9, 2017.; I. Mapfumo, Performance of asymmetrically clipped optical OFDM and DC-biased optical OFDM based on fast Fourier transform/discrete Hartley transform for powerline communication-visible light communication systems under impulsive noise. University of Johannesburg (South Africa), 2020.; A. Goldsmith, Wireless communications. Cambridge university press, 2005.; G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m),” Opt. Express, vol. 23, no. 12, pp. 15 700–15 705, Jun 2015.; K. Liang, C.-W. Chow, and Y. Liu, “Rgb visible light communication using mobilephone camera and multi-input multi-output,” Opt. Express, vol. 24, no. 9, pp. 9383–9388, May 2016.; C.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m rgb visible light communication transmission based on a cmos image sensor,” Opt. Express, vol. 26, no. 6, pp. 7079–7084, Mar 2018.; P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of rgb led-based optical camera communications,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–12, 2015.; M. S. Moreolo, R. Mu˜noz, and G. Junyent, “Novel power efficient optical ofdm based on hartley transform for intensity-modulated direct-detection systems,” Journal of lightwave Technology, vol. 28, no. 5, pp. 798–805, 2010.; R. N. Bracewell, “Discrete hartley transform,” JOSA, vol. 73, no. 12, pp. 1832–1835, 1983.; X. Li, R. Mardling, and J. Armstrong, “Channel capacity of im/dd optical communication systems and of aco-ofdm,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 2128–2133.; Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: modulation and signal processing. John Wiley & Sons, 2017.; J. Tang and L. Zhang, “Efficient real-fourier domain-based color shift keying ofdm implemented with hartley transform for visible light communication system,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017, pp. 1–5.; Y. Cao, X. Zhou, J. Sun, W. Zhang, and C.-X. Wang, “Optical spatial modulation with dht-based ofdm in visible light communication systems,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017, pp. 1–5.; J. R. B. J. M. Kahn, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.; Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications system and channel modelling with Matlab. CRC press, 2019. [163] R. Mesleh, H. Elgala, and H. Haas, “Optical spatial modulation,” Journal of Optical Communications and Networking, vol. 3, no. 3, pp. 234–244, 2011.; L. R. M. Castor, R. Natale, J. A. L. Silva, and M. E. V. Segatto, “Experimental investigation of broadband power line communication modems for onshore oil gas industry: A preliminary analysis,” in 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 244–248.; L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational complexity analysis of advanced physical layers based on multicarrier modulation,” in 2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.; J. L. H. Rios, N. G. Gonzalez, and J. C. G. ´Alvarez, “Experimental validation of inverse m-ppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 19, no. 02, pp. 280–287, 2021.; S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1385–1399, 2003.; S. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless optical channels,” International Journal of Communication Systems, vol. 18, no. 3, pp. 205–228, 2005.; P. Fahamuel, J. Thompson, and H. Haas, “Study, analysis and application of optical ofdm, single carrier (sc) and mimo in intensity modulation direct detection (im/dd),” 2013.; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia;
Veröffentlichung: Universidad Nacional de Colombia ; Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática ; Facultad de Ingeniería y Arquitectura ; Manizales, Colombia ; Universidad Nacional de Colombia - Sede Manizales, 2021
Medientyp: Hochschulschrift
Schlagwort:
  • 600 - Tecnología (Ciencias aplicadas)
  • OWC
  • VLC
  • LED
  • Modulation
  • PWM
  • M-PPM
  • Manchester
  • WDM
  • OFDM
  • Spatial Multiplexing
  • RGB
  • Modulación
  • Multiplexación espacial
  • Tecnología de la comunicación
  • Communication technology
Sonstiges:
  • Nachgewiesen in: BASE
  • Sprachen: English
  • Document Type: doctoral or postdoctoral thesis ; still image
  • File Description: xxiii, 108 páginas; application/pdf
  • Language: English
  • Rights: Reconocimiento 4.0 Internacional ; http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -