Zum Hauptinhalt springen

Chemical Composition and Phytotoxic Activity of Essential Oil from Senecio erucifolius

Zhang, C. P. ; Shao, Hua ; et al.
In: Chemistry of Natural Compounds, Jg. 57 (2021-05-01), S. 580-582
Online unknown

Chemical Composition and Phytotoxic Activity of Essential Oil from Senecio erucifolius 

Translated from Khimiya Prirodnykh Soedinenii, No. 3, May–June, 2021, pp. 492–493.

Senecio erucifolius L. (Asteraceae) is a perennial plant with a rhizomatic thermophilic habit that is distributed in parts of Asia, Europe, and the Mediterranean [1, 2]. Many species of the genus Senecio are used in traditional medicine in Asia and Africa [3]. The genus Senecio numbers ~1100 species worldwide that are well known as rich sources of pyrrolizidine alkaloids [4]. Previous phytochemical investigations found pyrrolizidine alkaloids, cyclohexanone derivatives, and flavonoids in S. argunensis, which was considered a subspecies of S. erucifolius [5, 6]. Also, three new compounds including semiquinol butyl 2-(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetate, the semiquinol jacaranone, and methyl 2-(4-hydroxyphenyl)acetate were isolated from S. erucifolius [3]. However, the chemical composition and phytotoxic activity of S. erucifolius essential oil were not investigated.

The aerial part of S. erucifolius was collected in June 2018 in Shawan District, Xinjiang Province, China (43.9680° N, 85.8763° E; 1146 m elevation), during flowering. A voucher specimen (serial No. XJBI 201825706) is deposited in the herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. Essential oil was extracted by traditional steam distillation for 4 h using fresh plant (200 g). Then, the essential oil was dried over anhydrous Na2SO4 and stored in a closed brown vial at 4°C. The yield of yellow essential oil was 0.18%.

The chemical composition of the essential oil was analyzed using a 7890A-5975C GC-MS system equipped with a DB-5ms column (5%-phenyl-methylpolysiloxane; 30 m × 0.25 mm; 0.25 μm film thickness) and a flame-ionization detector [7]. The relative contents of separate compounds were calculated from GC peak areas without correction coefficients. Constituents were identified by comparing their mass spectra and retention indices (RI, calculated by linear interpolation relative to the retention times of a standard mixture of C7-C40n-alkanes under the same GC-MS operating conditions) with the NIST14 database library and our own libraries [8, 9].

A total of 37 compounds were identified, which was 85.7% of the total essential-oil mass. They were classified as sesquiterpene hydrocarbons (32.7%), non-terpene O-containing compounds (29.0%), hydrocarbons (14.4%), monoterpenes (6.6%), and oxygenated sesquiterpenes (2.1%). The dominant constituents were dibutyl phthalate (16.2%), isoledene (7.7%), β-cis-ocimene (5.5%), butylcyclopentane (4.9%), and germacrene D (4.8%) (Table 1).

Table 1. Chemical Composition of Essential Oil from S. erucifolius

Constituent

RI

Content, %

Constituent

RI

Content, %

Butylcyclopentane

885

4.96

α-Se linene

1559

0.93

(Z)-β-Ocimene

1035

5.48

T-Calamenene

1586

1.48

(Z)-4-Undecene

1085

0.78

(E)-α -Cadinol

1618

2.75

(4E,6E)-Alloocimene

1115

0.69

Patchoulane

1635

0.74

Santolina triene

1320

0.49

α-Mint sulfide

1692

0.59

Damascenone

1351

1.1

Perhydrofarnesyl acetone

1821

0.87

Aromadendrene

1360

2.44

Dibutyl phthalate

1910

16.21

(Z)-β-Copaene

1372

1.07

Hexadecanoic acid

1952

2.00

Isoledene

1399

7.69

(E)-Phytol

2090

4.8

β-Cubebene

1408

2.7

Linolenic acid

2110

0.99

β-Copaene

1422

1.08

Tricosane

2290

0.86

Humulene

1430

2.34

Di(2-ethylhexyl) ester of adipic acid

2359

0.32

β-Farnesene

1441

3.23

Tetracosane

2389

1.06

Germacrene D

1458

4.86

Pentacosane

2491

2.81

δ-Cadinene

1465

0.32

Heptacosane

2690

1.14

Isogermacrene D

1472

1.27

Monoterpenes

6.66

Muurolene

1477

0.78

Sesquiterpene hydrocarbons

32.74

(E)-α -Farnesene

1489

1.6

Oxygenated sesquite rpenes

2.1

β-Cadinene

1499

2.43

Hydrocarbons

14.47

(E)-Calacorene

1510

0.64

O-Containing compounds

29.04

Spathulenol

1543

0.71

S-Containing compounds

0.74

Epoxycaryophyllene

1546

1.39

Total

85.75

The phytotoxic activity of the essential oil was evaluated against three weeds, i.e., Medicago sativa L., Urtica cannabina L., and Amaranthus retroflexus L. [7]. The essential oil was first dissolved in Me2CO (final concentration 0.5%), diluted with distilled H2O to produce solutions of concentrations 0, 0.125, 0.25, 0.5, 1, 2, and 4 mg/mL (Me2CO in a preliminary experiment at these concentrations did not significantly affect the development of sprouts of the test plants). Six repetitions of the phytotoxicity biotest were performed (n = 60). In general, the essential oil at low concentrations stimulated growth of sprouts of the treated species; at high concentrations, suppressed it.

The length of roots of M. sativa, U. cannabina, and A. retroflexus increase by 21.00, 10.46, and 2.53%, respectively, after treatment with oil at the lowest concentration (0.125 mg/mL) and decreased by 9.36, 23.00, and 19.53% after treatment at the highest concentration (4 mg/mL). The lengthening of the runners was analogous to the essential oil but to a lesser extent (Table 2).

Table 2. Phytotoxic Activity of Essential Oil from S. erucifolius

Test plant

Essential oil concentration, mg/mL

0

0.125

0.25

0.5

1

2

4

Roots

M. sativa

2.15 ± 0.19ab

2.61 ± 0.14a

2.43 ± 0.13a

2.28 ± 0.20ab

2.22 ± 0.16ab

1.91 ± 0.17b

1.95 ± 0.20b

U. cannabia

3.08 ± 0.26a

3.40 ± 0.20a

3.35 ± 0.22a

3.08 ± 0.21a

3.06 ± 0.24a

2.95 ± 0.31ab

2.37 ± 0.25b

A. retroflexus

4.83 ± 0.20a

4.95 ± 0.27a

5.01 ± 0.19a

4.73 ± 0.28a

4.41 ± 0.22ab

3.83 ± 0.32b

3.89 ± 0.36b

Runners

M. sativa

0.65 ± 0.05b

0.84 ± 0.06a

0.79 ± 0.04ab

0.74 ± 0.05ab

0.64 ± 0.05b

0.68 ± 0.04b

0.57 ± 0.05b

U. cannabia

0.45 ± 0.03c

0.84 ± 0.04a

0.63 ± 0.05b

0.65 ± 0.07b

0.58 ± 0.05bc

0.60 ± 0.05b

0.58 ± 0.05bc

A. retroflexus

1.22 ± 0.06a

1.28 ± 0.08a

1.29 ± 0.06a

1.16 ± 0.08ab

1.22 ± 0.06a

1.13 ± 0.10ab

0.99 ± 0.10b

Length of roots and runners expressed as average ± SE (n = 60); statistically significant difference (p < 0.05) shown by different letters.

Dibutyl phthalate, the dominant constituent of S. erucifolius essential oil, is widely used as a plasticizer. It was often detected in plants such as Atriplex cana and in microorganisms, indicating that it may be biosynthesized [10–13]. Furthermore, nanoplastics can accumulate in plants depending on their surface charge. This could have direct impacts for the environment and agricultural security [14]. Thus, we came to the conclusion that dibutyl phthalate in the essential oil could have come from environmental contamination or biosynthesis by S. erucifolius itself.

ACKNOWLEDGMENT

The work was financially supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0502) in collaboration with the Program of Tian-Shan Scientists of Shandong, China (ts201712071).

References 1 E. Oberdorfer, Pflanzensoziologische Eskursionsflora, Stuttgart, 1962. 2 Podsiedlik M, Nowinska R, Bednorz L. Acta Soc. Bot. Pol. 2016; 85: 15. 10.5586/asbp.3505 3 Mandic B, Godevac D, Vujisic L, Trifunovic S, Tesevic V, Vajs V, Milosavljevic S. Chem. Pap. 2011; 65: 90. 1:CAS:528:DC%2BC3cXhs1aksbzF. 10.2478/s11696-010-0091-x 4 Mandic BM, Godevac DN, Beskoski VP, Simic MR, Trifunovic SS, Tesevic VV, Vajs VV, Milosavljevic SM. J. Serb. Chem. Soc. 2009; 74: 27. 1:CAS:528:DC%2BD1MXhslejsbs%3D. 10.2298/JSC0901027M 5 Suleimen EM, Iskakova ZB, Ibataev ZA, Gorovoi PG, Dudkin RV, Ross SA. Chem. Nat. Compd. 2016; 52: 1125. 1:CAS:528:DC%2BC28Xhslyis7fK. 10.1007/s10600-016-1883-1 6 Wiebe EI. Flora of Siberia [in Russian]. 1997163 pp 7 Zhou S, Wei C, Zhang C, Han C, Kuchkarova N, Shao H. Toxins. 2019; 11: 598. 1:CAS:528:DC%2BB3cXpslaksb0%3D. 10.3390/toxins11100598 8 Linstrom PJ, Mallard WG. NIST Standard Reference Database Number 69. 2014 9 Sparkman OD. J. Am. Soc. Mass. Spectrom. 2005; 16: 1902. 1:CAS:528:DC%2BD2MXhtFCnt7vF. 10.1016/j.jasms.2005.07.008 Aboobaker Z, Viljoen A, Chen W, Crous PW, Maharaj VJ, van Vuuren S, Afr S. J. Bot. 2019; 122: 535. 1:CAS:528:DC%2BC1MXhslCltr0%3D Adsul VB, Khatiwora E, Torane RC, Deshpande NR. Chem. Nat. Compd. 2012; 48: 712. 1:CAS:528:DC%2BC38Xht12jsbnL. 10.1007/s10600-012-0362-6 Babu B, Wu JT. Sci. Total Environ. 2010; 408: 4969. 1:CAS:528:DC%2BC3cXhtV2jtrnF. 10.1016/j.scitotenv.2010.07.032 Wei CX, Zhou SX, Li WJ, Jiang CY, Yang W, Han CX, Zhang C, Shao H. Chem. Biodiversity. 2019; 16 Sun X, Yuan X, Jia Y, Feng L, Zhu F, Dong S, Liu J, Kong X, Tian H, Duan J, Ding ZJ, Wang SG, Xing BS. Nat. Nanotechnol. 2020; 15: 755. 1:CAS:528:DC%2BB3cXht1Wrtb7N. 10.1038/s41565-020-0707-4. 32572228

By C. P. Zhang; Z. O. Toshmatov; S. X. Zhou; W. J. Li; C. Zhang and H. Shao

Reported by Author; Author; Author; Author; Author; Author

Titel:
Chemical Composition and Phytotoxic Activity of Essential Oil from Senecio erucifolius
Autor/in / Beteiligte Person: Zhang, C. P. ; Shao, Hua ; Zhou, S. X. ; Zhang, C. ; Toshmatov, Z. O. ; Li, Wenliang
Link:
Zeitschrift: Chemistry of Natural Compounds, Jg. 57 (2021-05-01), S. 580-582
Veröffentlichung: Springer Science and Business Media LLC, 2021
Medientyp: unknown
ISSN: 1573-8388 (print) ; 0009-3130 (print)
DOI: 10.1007/s10600-021-03423-w
Schlagwort:
  • biology
  • law
  • Chemistry
  • Environmental chemistry
  • Plant Science
  • General Chemistry
  • Senecio
  • biology.organism_classification
  • Chemical composition
  • General Biochemistry, Genetics and Molecular Biology
  • Essential oil
  • law.invention
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Rights: CLOSED

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -