Zum Hauptinhalt springen

Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil of Psychotria serpens

Lai, Peng-Xiang ; Yu, Shang ; et al.
In: Chemistry of Natural Compounds, Jg. 56 (2020-07-01), S. 748-750
Online unknown

Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil of Psychotria serpens 

Published in Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2020, pp. 643–644.

Psychotria serpens L., an evergreen epiphytic or terrestrial liana belonging to the family Rubiaceae, is widespread throughout tropical and subtropical Africa, America, Asia, Madagascar, and Pacific Islands [[1]]. In Chinese folk medicine, the whole herbs of P. serpens are used as an antirheumatic, analgesic, muscles-relaxing, and circulation-promoting drug [[2]], and are also used to treat colds, fever, and asthma [[3]]. In the previous phytochemical investigation on the whole plant of Psychotria serpens L., one new type of glycosylsphingolipids, psychotramide A–D, has been identified [[4]]. Recently, several flavonoids and flavone glycosides, including quercetin, kaempferol, sevenetin, rutin, kaempferol-3-O-glucoside, tamarixetin-3-O-rutinoside, etc., were also isolated from this plant [[5]]. In the present study, the chemical composition and in vitro antimicrobial and antioxidant activities of essential oil (EO) from P. serpens are reported for the first time.

The fresh P. serpens was collected in September 2018 from Guigang in Guangxi Province of China. A voucher specimen (No. 0180017) was deposited in the Laboratory of Botany of Marine College, Shandong University. The aerial parts of the fresh P. serpens (300 g) were hydrodistilled for 3 h using a Clevenger apparatus. The distilled oil was obtained using ethyl ether as a collecting solvent and dried over anhydrous sodium sulfate and stored at 4°C until analyses. The yield of the oil was 0.05% (w/w) based on the fresh weight of the sample.

The essential oil was analyzed by GC-FID and GC-MS methods as described previously [[6]]. Identification of the components was carried out by matching their mass spectra with NIST 14 MS Search 2.2 Mass Spectral Database and comparing their Kovats retention indices from the HP-5MS column (relative to C8–C30n-alkanes, under the same experimental conditions) with reference libraries [[7]]. The relative amounts of individual components were calculated based on GC peak area without using a correction factor.

A total of 62 compounds were identified, which represent 96.5% of the total oil (Table 1). The essential oil of P. serpens was characterized by the presence of monoterpenes (14.3%), sesquiterpenes (29.8%), and oxygenated sesquiterpenes (21.6%). The main constituents were 1-octen-3-ol (23.2%), linalool (10.0%), neointermedeol (7.5%), valencene (7.1%), methyl salicylate (7.1%), α-selinene (6.0%), and β-cedrene (4.7%).

Chemical Composition of the Essential Oil of P. serpens

Compounda

RIb

%

Compounda

RIb

%

Benzaldehyde

962

0.3

γ-Cadinene

1517

0.7

1-Octen-3-ol

980

23.2

7-epi-α-Selinene

1522

0.2

Linalool oxide

1070

0.3

E)-Calamenene

1525

0.8

Linalool

1099

10.0

α-Copaen-11-ol

1541

0.3

Borneol

1167

0.5

α-Calacorene

1546

0.2

α-Terpineol

1190

0.7

Guaia-3,9-diene

1560

0.4

Methyl salicylate

1195

7.1

β-Spathulenol

1581

0.5

(E)-Carveol

1218

0.4

Caryophyllene oxide

1587

0.8

Nerol

1227

0.2

Isoaromadendrene epoxide

1591

0.2

(Z)-Carveol

1230

0.2

Cedrol

1607

0.4

Geraniol

1252

0.9

Humulene epoxide II

1614

0.4

Bornyl acetate

1286

1.1

Junenol

1618

1.2

2-Methoxy-4-vinylphenol

1314

0.1

Selin-6-en-4α-ol

1632

0.2

α-Longipinene

1354

0.2

γ-Eudesmol

1635

0.3

Cyclosativene

1366

0.2

Isospathulenol

1638

0.2

α-Ylangene

1373

0.4

τ-Cadinol

1644

0.9

β-Elemene

1388

0.8

Neointermedeol

1660

7.5

β-Cedrene

1418

4.7

Bulnesol

1672

2.8

(E)-α-Bergamotene

1436

0.2

α-Santalol

1679

0.4

Aromadendrene

1440

0.1

8-Cedren-13-ol

1685

0.5

α-Himachalene

1448

0.8

Muurol-5-en-4-one

1693

0.5

α-Humulene

1457

0.3

β-Santalol

1722

0.6

β-Santalene

1462

0.9

Vetiselinenol

1726

1.5

(Z)-Muurola-4(15),5-diene

1466

0.1

Valerenol

1742

0.3

γ-Gurjunene

1473

1.0

γ-Costol

1750

0.2

β-Chamigrene

1478

2.6

α-Cyperone

1755

0.4

α-Curcumene

1483

0.4

Z)-Lanceol

1761

0.2

β-Selinene

1487

1.5

E)-Isovalencenol

1788

0.3

Valencene

1491

7.1

Nootkatone

1805

0.1

α-Selinene

1499

6.0

Phytone

1839

0.1

α-Cuprenene

1504

0.2

Total identified

96.5

Shyobunone

1510

0.9

aCompounds are listed in order of their elution from a HP-5MS column; b Linear retention index relative to C8–C30n-alkanes on HP-5MS column.

The antibacterial activities of the oil were assessed against three Gram-positive and two Gram-negative bacterial strains using the disc agar diffusion [[9]] and microdilution methods [[10]]. The results are shown in Table 2. The essential oil exhibited significant antibacterial activity against S. aureus (MIC = MBC = 0.039 mg/mL) and moderate antibacterial activity against B. subtilis, P. larvae, and P. aeruginosa (MICs: 0.156–0.312 mg/mL). However, the oil showed poor antibacterial activity against E. coli (MIC = 1.250 mg/mL).

Antibacterial Activity of Essential Oil of P. serpens

Test strains

aDiameter of the inhibition zones, mm

MIC, mg/mL

MBC, mg/mL

EO

Ch

EO

Ch

EO

Ch

Gram positive

S. aureus ATCC 6538

15.5 ± 1.9

25.7 ± 2.4

0.039

0.002

0.039

0.004

B. subtilis ATCC 6633

10.7 ± 1.3

26.3 ± 2.8

0.312

0.002

0.312

0.008

P. larvae ATCC 9545

11.8 ± 1.7

27.7 ± 3.1

0.156

0.001

0.156

0.002

Gram negative

E. coli ATCC 25922

8.6 ± 0.6

23.2 ± 2.1

1.250

0.004

1.250

0.039

P. aeruginosa ATCC 27853

10.1 ± 0.9

16.7 ± 1.9

0.312

0.031

0.625

0.156

The diameter of the inhibition zones (mm), including the disc diameter (6 mm), are given as the mean ± SD of triplicate experiments. a Diameter of the inhibition zones of the EO: essential oil of P. serpens (tested volume, 1 mg/mL); positive control: Ch, chloramphenicol (tested volume, 0.01 mg/mL).

The multiple methods of DPPH radical scavenging activity [[11]], ABTS·+ scavenging activity [[12]], and FRAP assays [[13]] were used to evaluate the antioxidant capacities of EO. The results are presented in Table 3. It was shown that the P. serpens oil exhibited moderate ABTS·+ scavenging activity with an IC50 value of 0.438 mg/mL and moderate ferric ion reducing activity with a TEAC (Trolox equivalent antioxidant concentration) value of 46.31 μmol Trolox × g–1, while the oil showed weak DPPH radical scavenging activity (IC50 value of 1.250 mg/mL).

Results of Antioxidant Activity in vitro (DPPH, ABTS, and FRAP) of the Essential Oil of P. serpens

Test Sample

DPPH IC50, mg/mLa

ABTS IC50, mg/mLa

FRAP, μmol Trolox × g–1

Essential oil

1.250 ± 0.213

0.438 ± 0.053

46.31 ± 2.16

BHT b

0.043 ± 0.002

0.016 ± 0.001

Trolox b

0.018 ± 0.001

0.013 ± 0.001

aIC50 = the concentration of compound that affords a 50% reduction in the assay; b positive control used.

References 1 Wu CY. Flora of China. 1999: Beijing; Science Press: 60 2 Lee KH, Lin YM, Wu TS, Zhang DC, Yamagishi T, Hayashi T, Hall IH, Chang JJ, Wu RY, Yang TH. Planta Med. 1988; 54: 308. 10.1055/s-2006-962441 3 W. Kan, Pharmaceutical Botany, National Res. Inst. of Chinese Medicine, Taipei, 1981, pp. 478, 524. 4 Zhang CX, He XX, Guan SY, Zhong Y, Lin CZ, Xiong TQ, Zhu CC. Nat. Prod. Res. 2012; 26: 1864. 10.1080/14786419.2011.617747 5 Lin CZ, Wu AZ, Zhong Y, Wang YM, Peng GT, Su XJ, Liu BX, Deng Y, Zhu CC, Zhang CX. J. Can. Res. Updates. 2015; 4: 60. 10.6000/1929-2279.2015.04.02.3 6 Lai PX, Wang CL, Ma L. Chem. Nat. Compd. 2018; 54: 588. 10.1007/s10600-018-2417-9 7 R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1th Ed, Allured Publishing Corporation, Carol Stream, IL, 2017. 8 P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2014 (http://webbook.nist.gov). 9 M. A. Wikler, Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, Clinical and Laboratory Standards Institute, 2006. Andrews JM. J. Antimicrob. Chemother. 2001; 48: 5. 10.1093/jac/48.suppl_1.5 Fukumoto LR, Mazza G. J. Agric. Food Chem. 2000; 48: 3597. 10.1021/jf000220w Olszowy M, Dawidowicz AL. Monatsh. Chem. 2016; 147: 2083. 10.1007/s00706-016-1837-0 Benzie IF, Strain JJ. Anal. Biochem. 1996; 239: 70. 10.1006/abio.1996.0292

By Shang Yu; Bing-Cheng Liu and Peng-Xiang Lai

Reported by Author; Author; Author

Titel:
Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil of Psychotria serpens
Autor/in / Beteiligte Person: Lai, Peng-Xiang ; Yu, Shang ; Liu, Bing-Cheng
Link:
Zeitschrift: Chemistry of Natural Compounds, Jg. 56 (2020-07-01), S. 748-750
Veröffentlichung: Springer Science and Business Media LLC, 2020
Medientyp: unknown
ISSN: 1573-8388 (print) ; 0009-3130 (print)
DOI: 10.1007/s10600-020-03138-4
Schlagwort:
  • Antioxidant
  • Chemistry
  • law
  • medicine.medical_treatment
  • Botany
  • Psychotria serpens
  • medicine
  • Plant Science
  • General Chemistry
  • Chemical composition
  • General Biochemistry, Genetics and Molecular Biology
  • Essential oil
  • law.invention
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Rights: CLOSED

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -