Zum Hauptinhalt springen

Chemical Composition and Antioxidant Activity of Essential Oil of Leucas lanata

Bibhuti Bhusan Champati ; Jena, Sudipta ; et al.
In: Chemistry of Natural Compounds, Jg. 59 (2023-03-01), S. 386-388
Online unknown

Chemical Composition and Antioxidant Activity of Essential Oil of Leucas lanata 

Published in Khimiya Prirodnykh Soedinenii, No. 2, March–April, 2023, pp. 325–327.

The genus Leucas R. Br. (Lamiaceae) comprising about 100 species of shrubs, sub-shrubs and herbs, is distributed in tropical to Southern Africa, Arabian Peninsula, Iran to South China, Taiwan, Japan, South East Asia and up to Australia [[1]]. In India, 41 species are reported to occur with maximum species concentration in the Southern Peninsula, of which 23 species are endemic to the country [[2]]. The species of the genus are extensively used in Africa and Asia in the traditional system of medicine for several ailments, suggesting that they have the potential for the discovery of new drugs or leading molecules [[4]]. Several compounds such as labdane-type diterpenes, triterpenes, flavones, lignans, flavonoids, coumarins, steroids, terpenes and fatty acids have been isolated from different Leucas species [[6]–[8]].

Leucas lanata Benth. (Lamiaceae) is a herbaceous perennial plant growing among the grasses on the dry slopes and distributed in South-Central China, East Himalaya, India, Myanmar, Nepal, Pakistan, Philippines, Thailand, Vietnam, and West Himalaya [[9]]. The juice of the whole plant has been used traditionally to treat a variety of diseases like stomach ache, headache and whooping cough [[10]–[12]]. The plant is also used as antidote for reptile poisons [[13]]. The plant extract is also reported to exhibit hepatoprotective, antimicrobial, anti-Parkinson, antioxidant, antiepileptic and wound-healing properties [[9], [14]–[16]]. The GC-MS analysis of leaf extract showed the presence of 6-octadecenoic acid (45.54%), cis-13-octadecenoic acid (42.76%), and l-(+)-ascorbic acid 2,6-dihexadecanoate (2.84%) as predominant constituents [[16]]. A thorough survey of the literature reveals that no work has yet been done on the composition and bioactivity of Leucas lanata essential oil. Hence, the present communication is the first study on the volatile profile and antioxidant activity of the Leucas lanata leaf essential oil.

The fresh leaves of Leucas lanata were collected from Hadagadh Wildlife Sanctuary, Keonjhar District of Odisha, India (21.244812 N, 86.250863 E) in the month of November 2020 and the species was identified by Prof. Pratap Chandra Panda, Taxonomist. The voucher specimen (2022/CBT Dt. 3.11.2021) has been preserved in the Herbarium of Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar. The leaves were shade-dried for 10 days and pulverized. Subsequently, 500 g of the leaves were hydro-distilled for 6 h in a Clevenger apparatus. Following extraction, the essential oil was stored at 4°C until analysis. The essential oil extracted from the leaf of L. lanata was pale yellow in colour with an average oil yield of 0.15% (v/w) on a dry weight basis.

The compound identification was performed on Clarus 580 Gas Chromatograph (Perkin-Elmer, USA) assembled with a SQ8S MS detector. The analysis was carried out on a Elite-5 MS capillary column (30 m × 0.25 mm × 0.25 μm) with helium as the gas carrier (1.0 mL/min). The oven temperature was kept at 60°C, then gradually increased to 220°C at 3°C/min and finally held for 7 min. Injector and ion source temperatures were kept at 250 and 150°C, respectively. The constituents were identified by comparing the mass spectra of detected compound with the in-build NIST Mass Spectral library and by matching the retention indices (RI) with published bibliographic literature [[17]].

The leaf essential oil composition of Leucas lanata is given in Table 1 and the compounds were mentioned according to their elution order in Elite-5 MS column. The GC-MS analysis resulted in the identification of 43 constituents representing 86.08% of the total leaf oil. The analysis showed that the essential oil was rich in sesquiterpene hydrocarbons (48.79%), sesquiterpene alcohols (20.44%), others compounds (13.48%), ether (2.91%), phenylpropanoid (0.28%), and monoterpene alcohol (0.18%). β-Caryophyllene (17.15%), spathulenol (13.43%), (Z,Z)-9,12-octadecadienoic acid (10.60%), calamenene (7.63%), and aromadendrene (6.69%) were the predominant constituents of the essential oil. Other compounds identified with compositions above 1% were β-curcumene (2.17%), caryophyllene oxide (2.12%), β-eudesmol (1.89%), γ-gurjunene (1.87%), allo-aromadendrene (1.78%), t-cadinol (1.49%), eudesm-11-en-4α-ol (1.18%), cyclosativene (1.17%), α-ylangene (1.10%), cyclopentadecanolide (1.03%), β-sesquiphellandrene (1.01%), and bicyclogermacrene (1.00%). A total of 26 components had compositions that were less than 1%. In earlier studies, β-caryophyllene has been reported as the major constituent in the aerial parts of Leucas aspera, Leucas indica, and Leucas stelligera collected from different parts of India with sesquiterpene hydrocarbons as the predominant class of compounds [[18]–[20]].

Table 1. Chemical Composition of Leaf Essential Oil of Leucas lanata

Compound a

RI b

%

Compound a

RIb

%

α-Terpineol

1189

0.18

Germacrene-B

1552

0.78

Eugenol

1337

0.28

Spathulenol

1572

13.43

Cyclosativene

1364

1.17

Caryophyllene oxide

1598

2.12

α-Ylangene

1377

1.10

Humulene epioxide II

1616

0.79

β-Cubebene

1395

0.33

γ-Eudesmol

1631

0.66

Longifolene

1404

0.21

t-Cadinol

1633

1.49

β-caryophyllene

1409

17.15

β-Eudesmol

1642

1.89

β-Copaene

1422

0.45

α-Cadinol

1655

0.71

β-Gurjunene

1424

0.32

Eudesm-11-en-4α-ol

1661

1.18

α-Guaiene

1429

0.49

β-Bisabolol

1668

0.56

Aromadendrene

1442

6.69

Occidenol

1692

0.52

α-Humulene

1445

0.39

n-Tetradecanoic acid

1722

0.27

allo-Aromadendrene

1464

1.78

Amorpha-4,7(11)-diene

1801

0.52

Bicyclogermacrene

1469

1.00

Cyclopentadecanolide

1833

1.03

γ-Muurolene

1472

0.27

Methyl hexadecanoate

1917

0.24

trans-Cadina-1(6),4-diene

1476

0.66

Hexadecanoic acid

1970

0.66

γ-Gurjunene

1479

1.87

(Z,Z)-9,12-Octadecadienoic acid

2123

10.60

Germacrene-D

1490

0.57

n-Tricosane

2324

0.68

γ-Himachalene

1497

0.87

Total identified

86.08

β-Selinene

1500

0.36

Sesquiterpene hydrocarbons

48.79

β-Curcumene

1507

2.17

Sesquiterpene alcohols

20.44

Calamenene

1510

7.63

Ether

2.91

7-epi-α-Selinene

1520

0.78

Phenylpropanoid

0.28

β-Sesquiphellandrene

1530

1.01

Monoterpene alcohol

0.18

α-Calacorene

1545

0.22

Others

13.48

a Compounds listed in order of elution from Elite-5 MS column; b retention indices calculated from homologous series of (C8–C20) n-alkane on Elite-5 MS column.

Similarly, a high content of β-caryophyllene followed by α-humulene and germacrene D were identified in the essential oil of the aerial parts of Leucas zeylanica collected from Vietnam [[21]]. While iso-menthone was found to be the major constituent of the essential oil of Leucas glabrata in Tanzania [[22]]; camphor was the dominant compound of Leucas virgata essential oil [[23]]. The presence of caryophyllene oxide, humulene epoxide II, allo-aromadendrene, germacrene D and sabinene have been identified in other Leucas species [[18], [21]–[23]].

The antioxidant potential of essential oil was evaluated using DPPH and ABTS assay, according to the method described by Jena et al. [[24]]. Ascorbic acid and BHT were taken as positive controls. The lower the IC50 value, the better the antioxidant activity of the sample. Among the samples tested for the DPPH assay, the leaf essential oil exhibited moderate antioxidant ability (93.49 ± 2.16 μg/mL) as compared to ascorbic acid (5.61 ± 0.15 μg/mL) and BHT (21.94 ± 0.35 μg/mL). Similarly, the leaf essential oil of L. lanata exhibited moderate ABTS free radical scavenging ability (87.21 ± 1.73 μg/mL) compared to ascorbic acid (2.72 ± 0.05 μg/mL) and BHT (18.11 ± 0.13 μg/mL).

The compounds like β-caryophyllene, allo-aromadendrene and caryophyllene oxide present in the essential oil of Leucas lanata might be responsible for the antioxidant activity [[25]]. The sesquiterpene hydrocarbon and β-caryophyllene might be suitable for some therapeutic applications as it is reported to inhibit CCl4-mediated liver fibrosis and reduce the activation of hepatic cells [[27]].

Acknowledgment

The authors are grateful to Dr. S. C. Si, Dean, Centre for Biotechnology and Dr. M. R. Nayak, President, Siksha 'O' Anusandhan (Deemed to be University) for providing facilities and encouragement. In addition, Bibhuti Bhusan Champati and Sudipta Jena contributed equally to this work.

References 1 R. M. Harley, S. Atkin, A. L. Budanstev, P. D. Cantino, B. J. Conn, R. Grayer, M. M. Harley, R. de Tok, T. Krestovskaja, R. Morales, A. J. Paton, O. Ryding, and T. Upson, Flowering Plants, Dicotyledons, in: K. Kubitzki (ed.), The Families and Genera of Vascular Plants, Vol. 6, Springer Verlag, Berlin, 2004, pp. 167–275. 2 V. Singh, Monograph on Indian Leucas R. Br. (Dronapushpi) Lamiaceae, Scientific Publishers, Jodhpur, 208 (2001). 3 P. Sunojkumar and P. Mathew, South Indian Leucas: A Taxonomic Monograph, CRIKSC Publishers, Calicut, Kerala, 1 (2008). 4 Chouhan HS, Singh SK. J. Pharmacogn. Phytother. 2011; 3: 13 5 Nidhal N, Zhou XM, Chen G, Zhang B, Han C, Song X. Biochem. Syst. Ecol. 2020; 89. 1:CAS:528:DC%2BB3cXhtFCkt7g%3D. 10.1016/j.bse.2020.104006 6 Choudhary AK, Sunojkumar P, Mishra G. Phytochemistry. 2017; 143: 72. 1:CAS:528:DC%2BC2sXht1Ohs7%2FK. 10.1016/j.phytochem.2017.07.007. 28777980 7 Moody JO, Gundidza M, Wyllie G. Flavour Fragr. J. 2006; 21: 872. 1:CAS:528:DC%2BD28XhtlWlurzI. 10.1002/ffj.1669 8 Das SN, Patro VJ, Dinda SC. Pharmacogn. Rev. 2012; 6: 100. 10.4103/0973-7847.99943. 23055635. 3459451 9 Dixit V, Verma P, Agnihotri P, Paliwal AK, Rao CV, Husain T. J. Phytopharm. 2015; 4: 9. 10.31254/phyto.2015.4103 Chagnon M. J. Ethnopharmacol. 1984; 12: 239. 1:STN:280:DyaL2M7os1yjsA%3D%3D. 10.1016/0378-8741(84)90053-9. 6533410 Girach RD, Aminuddin PA, Siddioui PA, Khan SA. Int. J. Pharm. 1994; 32: 274 Nazir AP, Negi AK, Todaria NP. Nat. Sci. 2010; 8: 57 Yang LL, Yen KY, Kiso Y, Hikino H. J. Ethnopharmacol. 1987; 19: 103. 1:STN:280:DyaL2s3islCktg%3D%3D. 10.1016/0378-8741(87)90142-5. 3586694 Ramalingam R, Nath AR, Madhavi BB, Nagulu M, Balasubramaniam A. J. Pharm. Res. 2013; 6: 368. 1:CAS:528:DC%2BC3sXht1yksbrF Verma P, Srivastava S, Rao CV. Asian J. Pharm Clin. Res. 2018; 11: 451. 10.22159/ajpcr.2018.v11i6.25888 Verma R, Tapwal A, Kumar D, Puri S. Eco. Env. Cons. 2020; 26: S169 R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/ Mass Spectroscopy, Allured Publishing Corporation, Carol Stream, IL, 2007. Joshi RK. Nat. Prod. Commun. 2014; 9: 1607. 25532292 Joshi RK. Chem. Nat. Compd. 2015; 51: 579. 1:CAS:528:DC%2BC2MXptlOrtrk%3D. 10.1007/s10600-015-1352-2 Joshi RK. J. Chromatogr. Sci. 2016; 54: 295. 1:CAS:528:DC%2BC28XhtlGrtbbO. 26620424 N. H. Hung, N. Thi Hong Chuong, P. Satyal, H. V. Hieu, D. N. Dai, L. T. Huong, L. H. Sinh, N. Thi Bich Ngoc, V. T. Hien, and W. N. Setzer, Nat. Prod. Commun., 14, 1 (2019). Vagionas K, Ngassapa O, Runyoro D, Graikou K, Gortzi O, Chinou I. Food Chem. 2007; 105: 1711. 1:CAS:528:DC%2BD2sXot1GjtLs%3D. 10.1016/j.foodchem.2007.05.029 Mothana RA, Noman OM, Al-Sheddi ES, Khaled JM, Al-Said MS, Al-Rehaily AJ. Molecules. 2017; 22: 367. 10.3390/molecules22030367. 28264464. 6155217 Jena S, Ray A, Banerjee A, Sahoo A, Nasim N, Sahoo S, Kar B, Patnaik J, Panda PC, Nayak S. Nat. Prod. Res. 2017; 31: 2188. 1:CAS:528:DC%2BC2sXmslGgtQ%3D%3D. 10.1080/14786419.2017.1278600. 28067055 Cote H, Boucher MA, Pichette A, Legault J. Medicines. 2017; 4: 34. 10.3390/medicines4020034. 28930249. 5590070 He ZQ, Shen XY, Cheng ZY, Wang RL, Lai PX, Xing X. Rec. Nat. Prod. 2020; 14: 160. 1:CAS:528:DC%2BB3cXhs12nsrrI. 10.25135/rnp.150.19.07.1321 Calleja MA, Vieites JM, Montero-Meterdez T, Torres MI, Faus MJ, Gil A, Suarez A. Br. J. Nutr. 2013; 109: 394. 1:CAS:528:DC%2BC3sXksFOjurY%3D. 10.1017/S0007114512001298. 22717234

By Bibhuti Bhusan Champati; Sudipta Jena; Asit Ray; Swagat Mohanty; Ambika Sahoo; Prabhat Kumar Das; Subrat Kumar Kar; Tirthabrata Sahoo; Sanghamitra Nayak and Pratap Chandra Panda

Reported by Author; Author; Author; Author; Author; Author; Author; Author; Author; Author

Titel:
Chemical Composition and Antioxidant Activity of Essential Oil of Leucas lanata
Autor/in / Beteiligte Person: Bibhuti Bhusan Champati ; Jena, Sudipta ; Ray, Asit ; Mohanty, Swagat ; Sahoo, Ambika ; Prabhat Kumar Das ; Subrat Kumar Kar ; Sahoo, Tirthabrata ; Nayak, Sanghamitra ; Pratap Chandra Panda
Link:
Zeitschrift: Chemistry of Natural Compounds, Jg. 59 (2023-03-01), S. 386-388
Veröffentlichung: Springer Science and Business Media LLC, 2023
Medientyp: unknown
ISSN: 1573-8388 (print) ; 0009-3130 (print)
DOI: 10.1007/s10600-023-04001-y
Schlagwort:
  • Plant Science
  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Rights: CLOSED

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -