Zum Hauptinhalt springen

Chemical Composition of the Essential Oil of Cnidoscolus quercifolius from Brazil

Lucena, M. F. A. ; M. M. de Moraes ; et al.
In: Chemistry of Natural Compounds, Jg. 56 (2020-09-01), S. 933-936
Online unknown

Chemical Composition of the Essential Oil of Cnidoscolus quercifolius from Brazil 

Published in Khimiya Prirodnykh Soedinenii, No. 5, September–October, 2020, pp. 798–800.

The Caatinga is a semi-arid biome exclusive to Brazil with considerable biodiversity and a biological heritage including 4880 species of flowering plants, 291 of which are endemic to the region [[1]]. Cnidoscolus quercifolius (syn. Cnidoscolus phyllacanthus) belongs to the family Euphorbiaceae and is found exclusively in the Caatinga. This typically xerophilic tree can reach a height of 12 meters. Its leaves are long, thick, and lanceolate, with jagged edges; stinging trichomes cover the branches, leaves, and fruit [[2]]. C. quercifolius is abundant in states of the northeastern region of the country and is known locally as favela, favela–de-cachorro, or faveleira [[3]].

The cataplasm under the outer bark and infusions made from the leaves are used in folk medicine due to their healing, analgesic, anti-inflammatory, antibiotic, and diuretic properties, as well as for the treatment of rashes and to remove warts [[4]]. Different parts of the plant are used to feed animals, and the seeds are used to make flour and to extract oil of high nutritional value [[6]].

The literature reveals several biologic activities for different parts of C. quercifolius. The seed oil of C. quercifolius showed high antioxidant activity [[8]], and the ethanolic extract of the leaves, roots, and root barks revealed anti-inflammatory [[5]] and antimicrobial activity [[9]]. The ethyl acetate fraction of the ethanolic extract demonstrated a strong cytotoxic effect against prostate and breast cancer cell lines [[10]], and aqueous extracts of C. quercifolius showed a hypoglycemic effect and no oral toxicity, revealing a new source of compounds for the control of diabetes [[11]].

Phytochemical studies of the species reveal the occurrence of amino acids, terpenoids [[12]], tetracyclic cyclobutene (neofavelanone) [[13]], tetracyclic cyclopropane (favelanone) [[14]], and tricyclic benzocycloheptene derivatives (deoxofaveline, faveline methyl ether, and faveline) [[15]].

To the best of our knowledge, C. quercifolius has not previously been investigated for the identification of the chemical constituents of its essential oils. This paper reports for the first time the chemical composition of essential oils from the leaves, flowers, and bark of C. quercifolius occurring in the Caatinga of Brazil.

The essential oils obtained through conventional hydrodistillation of fresh leaves, flowers, and bark of C. quercifolius had a light yellow color. The yield on a fresh weight basis was 0.01% for leaves, 0.03% for flowers, and 0.01% for bark. The oils were submitted to CG-MS for the determination of the constituents. Thirty-one, thirty, and eighteen compounds were identified in the essential oils from leaves, flowers, and bark, respectively, accounting for 97.3%, 98.5%, and 81.4% of the total oils (Table 1).

Composition of Essential Oil from Leaves, Flowers, and Barks of Cnidoscolus quercifolius, Yield (%) ± SD

Compound

RIa

Leaves

Flowers

Bark

α-Pinene*

929

3.3 ± 0.1

Sabinene

963

1.4 ± 0.1

β-Pinene*

978

9.6 ± 0.2

Myrcene*

989

6.1 ± 0.1

Dehydroxy-trans-Linalool oxide

995

3.1 ± 0.1

Meta-mentha1-(7),8-diene

999

1.8 ± 0.1

δ-2-Carene

1000

2.4 ± 0.1

α-Phellandrene*

1002

5.0 ± 0.1

o-Cresol methyl ether

1004

4.0 ± 0.1

iso-Sylvestrene

1005

4.4 ± 0.2

δ-3-Carene

1009

3.6 ± 0.1

1,4-Cineole

1012

0.9 ± 0.0

α-Terpinene*

1014

1.5 ± 0.1

Limonene*

1023

5.2 ± 0.2

cis-Arbusculone

1046

0.9 ± 0.1

γ-Terpinene*

1057

20.5 ± 0.6

trans-Pinene hydrate

1119

3.2 ± 0.1

1.7 ± 0.1

0.3 ± 0.0

Dihydrolinalool

1131

1.7 ± 0.1

3.3 ± 0.1

cis-Verbenol

1134

1.9 ± 0.1

cis-β-Terpineol

1139

1.7 ± 0.1

Menthone

1148

4.7 ± 0.2

2.8 ± 0.0

neo-3-Thujanol

1150

1.7 ± 0.1

cis-Dihydro-β-terpineol

1154

1.1 ± 0.1

Tetrahydrolavandulol

1157

0.9 ± 0.0

1.8 ± 0.0

α-Terpineol

1186

10.9 ± 0.3

3.0 ± 0.1

neo-Dihydrocarveol

1194

0.6 ± 0.0

Shisofuran

1198

0.4 ± 0.0

1.0 ± 0.0

cis-4-Caranone

1200

0.8 ± 0.0

Citronellol*

1223

0.4 ± 0.0

Thymol*

1289

0.7 ± 0.0

1.1 ± 0.1

trans-Verbenyl acetate

1291

0.9 ± 0.0

Silphiperfol-4,7(14)-diene

1358

5.9 ± 0.2

(Z)-β-Damascone

1361

1.0 ±0.1

0.5 ± 0.0

α-Funebrene

1402

1.4 ± 0.0

Sesquithujene

1405

0.4 ± 0.0

0.1 ± 0.0

(E)-β-Farnesene

1454

0.5 ± 0.0

0.3 ± 0.0

Methyl-β-(E)-ionol

1479

1.0 ± 0.1

(E)-β-Ionene

1487

0.5 ± 0.0

Bicyclogermacrene*

1500

1.8 ± 0.1

1.0 ± 0.0

β-Bisabolene

1505

0.6 ± 0.0

α-Cadinene

1537

2.0 ± 0.1

1.3 ± 0.1

(E)-Nerolidol*

1561

0.2 ± 0.0

Curcumenol

1733

0.3 ± 0.0

Vetivenic acid

1811

0.5 ± 0.0

Cryptomeridiol

1813

1.1 ± 0.1

0.6 ± 0.0

β-Vetivone

1822

0.5 ± 0.0

(8S),14-Cedranediol

1889

3.2 ± 0.1

Isopimara-9(11),15-diene

1905

0.9 ± 0.1

11,12-Dihydroxyvalencene

1914

7.8 ± 0.2

Beyerene

1931

0.6 ± 0.1

Isohibaene

1933

1.0 ± 0.1

Cembrene

1937

4.7 ± 0.2

Phytol*

1942

42.1 ± 1.1

Isophytol

1946

2.5 ± 0.2

Palmitic acid

1988

1.9 ± 0.1

13-epi-Dolabradiene

2000

0.3 ± 0.0

Polygodial

2016

0.4 ± 0.0

Phyllocladene

2016

3.4 ± 0.2

Manool

2056

6.6 ± 0.3

Abietadiene

2087

21.4 ± 1.3

Linoleic acid

2132

2.4 ± 0.1

Oleic acid

2141

0.7 ± 0.1

Sandaracopimarinal

2184

1.0 ± 0.0

Phyllocladanol

2209

2.4 ± 0.1

Dehydro-abietal

2274

29.9 ± 1.1

Total

97.3 ± 1.3

98.5 ± 0.6

81.4 ± 1.3

Monoterpenes

26.9 ± 0.3

95.5 ± 0.5

0.3 ± 0.0

Sesquiterpenes

25.8 ± 0.1

3.0 ± 0.1

4.2 ± 0.1

Diterpenes

44.6 ± 1.1

72.5 ± 1.2

Fatty acids

5.0 ± 0.1

a RI: Retention indices calculated from retention times in relation to those of a series of C8–C40n-alkanes on a DB-5 capillary column; RI: Retention index; MS: mass spectroscopy; CI: co-injection with authentic compounds. Method of identification: RI, MS and *RI, MS, CI.

Diterpene was the predominant class of compounds in the leaf (44.6%) and bark (72.5%) oils, whereas monoterpenes predominated in the flower oil (95.5%). The major constituents identified in the leaf oil were phytol (42.1%), α-terpineol (10.9%), and 11,12-dihydroxyvalencene (7.8%). The major constituents identified in the flower oil were γ-terpinene (20.5%) and β-pinene (9.6%). The diterpenes dehydroabietal (29.9%) and abietadiene (21.4%) were the major constituents identified in the bark oil. These results suggest the chemical variability among the essentials oils from different organs of C. quercifolius.

Fresh leaves, flowers, and bark of C. quercifolius were collected from the municipality of Patos in the state of Paraiba (Brazil) in the morning in September 2017 from an adult specimen in an area of the Caatinga under human pressure.

The plant was identified by botanist Dr. Maria de Fatima de Araujo Lucena of the Centro de Saude e Tecnologia Rural [Center for Health and Rural Technology] of the Universidade Federal de Campina Grande (UFCG). A voucher sample of the species was mounted and deposited in the herbarium of the UFCG Centro de Saude e Tecnologia Rural under No. 6786. The extraction of the essential oil through conventional hydrodistillation of the fresh leaves was performed as described previously by Moraes et al. (2012) [[16]]. The gas chromatography-mass spectrometry (GC-MS) (Clarus® 580 PerkinElmer, Shelton, CO, USA) analysis was carried out using a system with a mass-selective detector, mass spectrometer in EI 70 eV with a scan interval of 0.5 s and fragments from 40 to 550 Da. A nonpolar DB-5 fused silica capillary column (30 m × 0.25 mm × 0.25 μm) was used, with the oven temperature programmed from 60 to 240°C at a rate 3°C min–1. The injector and detector temperature was 260°C. Helium was used as the carrier gas at a flow rate of 1 mL min–1 in split mode (1:30), flow rate = 1 mL min–1. The injection volume was 0.5 μL of a diluted solution (1/100) of the oil in n-hexane. Identification of the components was based on GC-MS retention indices with reference to a homologous series of C8–C40 n-alkanes calculated using the Van den Dool and Kratz equation [[17]] and by computer matching against the mass spectral library of the GC-MS data system (NIST 11 and Wiley 11th) and co-injection with authentic standards, as well as other published mass spectra [[18]].

References 1 BFG (The Brazil Flora Group), Rodriguesia, 66, 1085 (2015). 2 Melo AL, Sales MF. Acta Bot. Bras. 2008; 22: 806. 10.1590/S0102-33062008000300017 3 Drumond MA, Salviano MC, Cavalcanti NB. Rev. Bras. Cienc. Agric. 2007; 2; 4: 308 4 H. Lorenzi and F. J. A. Matos, Plantas Medicinais no Brasil: Nativas e Exoticas, Nova Odessa, 2 ed, Sao Paulo, 2008, 576 pp. 5 Gomes LMA, de Andrade TMD, Silva JC, de Lima JT, Junior LJQ, Almeida JRGS. Pharmacogn. Res. 2014; 6: 345. 10.4103/0974-8490.138290 6 Silva GLS, Silva AMA, Nobrega GH, Azevedo SA, Filho JMP, Mendes RS. Cienc. Agrotec. 2010; 34: 233. 10.1590/S1413-70542010000100030 7 Silva SI, Oliveira AFM, Negri G, Salatino A. Biomass Bioenerg. 2014; 69: 124. 10.1016/j.biombioe.2014.07.010 8 Santos KA, Filho OPA, Aguiar CM, Milinsk MC, Sampaio SC, Palu F, Silva EA. Ind. Crop. Prod. 2017; 97: 368. 10.1016/j.indcrop.2016.12.045 9 P. F. M. Paredes, F. R. Vasconcelos, R. T. T. Paim, M. M. M. Marques, S. M. Morais, S. M. Lira, I. D. Braquehais, I. G. P. Vieira, F. N. P. Mendes, and M. I. F. Guedes, Evid.-Based Compl. Alt. Med, 1 (2016). Junior RGO, Ferraz CAA, Pereira ECV, Sampaio PA, Silva MFS, Pessoa CO, Rolim LA, Almeida JRGS. Pharmacogn. Mag. 2019; 15; 60: 24 Lira SM, Canabrava NV, Benjamin SR, Silva JYG, Viana DA, Lima CLS, Paredes PFM, Marques MMM, Pereira EO, Queiroz EAM, Guedes MIF. Braz. J. Med. Biol. Res. 2017; 50: 10 Paula AC, Melo KM, da Silva AM, Ferreira DA, Monte FJQ, Santiago GMP, Lemos TLG, Filho RB, Militao GCG, Silva PBN, Silva TG. Rev.Virtual Quim. 2016; 8; 1: 231 Endo Y, Ohta T, Nozoe S. Tetrahedron Lett. 1992; 33: 353 Endo Y, Ohta T, Nozoe S. Tetrahedron Lett. 1991; 32: 5555 Endo Y, Ohta T, Nozoe S. Tetrahedron Lett. 1991; 32: 3083 Moraes MM, da Camara CAG, Santos ML, Fagg CW. J. Braz. Chem. Soc. 2012; 23; 9: 1647 Van den dool H, Kratz PD. J. Chromatogr. A. 1963; 11: 463 Adams RP. Identification of Essential oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. 20174: Carol Stream, Illinois; Allured Publ. Corp

By A. S. Alves; M. M. de Moraes; C. A. G. da Camara and M. F. A. Lucena

Reported by Author; Author; Author; Author

Titel:
Chemical Composition of the Essential Oil of Cnidoscolus quercifolius from Brazil
Autor/in / Beteiligte Person: Lucena, M. F. A. ; M. M. de Moraes ; C. A. G. da Camara ; Alves, A. S.
Link:
Zeitschrift: Chemistry of Natural Compounds, Jg. 56 (2020-09-01), S. 933-936
Veröffentlichung: Springer Science and Business Media LLC, 2020
Medientyp: unknown
ISSN: 1573-8388 (print) ; 0009-3130 (print)
DOI: 10.1007/s10600-020-03191-z
Schlagwort:
  • biology
  • law
  • Chemistry
  • Botany
  • Plant Science
  • General Chemistry
  • biology.organism_classification
  • Chemical composition
  • General Biochemistry, Genetics and Molecular Biology
  • Cnidoscolus quercifolius
  • Essential oil
  • law.invention
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Rights: CLOSED

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -