Zum Hauptinhalt springen

Essential and Non-Essential Elements Levels in Fish Species Highly Consumed in the Middle Miranda River, Brazilian Pantanal.

Quintela, FM ; da Silva FA ; et al.
In: Archives of environmental contamination and toxicology, 2024-06-09
academicJournal

Titel:
Essential and Non-Essential Elements Levels in Fish Species Highly Consumed in the Middle Miranda River, Brazilian Pantanal.
Autor/in / Beteiligte Person: Quintela, FM ; da Silva FA ; Correa, F ; Carvalho, FR ; Galiano, D ; Pires, MCO ; Galatti, U
Zeitschrift: Archives of environmental contamination and toxicology, 2024-06-09
Veröffentlichung: Ahead of Print, 2024
Medientyp: academicJournal
ISSN: 1432-0703 (electronic)
DOI: 10.1007/s00244-024-01072-y
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Arch Environ Contam Toxicol] 2024 Jun 09. <i>Date of Electronic Publication: </i>2024 Jun 09.
  • References: Afzaal M, Hameed S, Liaqat I, Khan AAA, Manan HA, Shahid R, Altaf M (2022) Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Pract Technol 17:1253. https://doi.org/10.2166/wpt.2022.039. (PMID: 10.2166/wpt.2022.039) ; Ajima MNO, Nnodi PC, Ogo OA, Adaka GS, Osuigwe DI, Njoku DC (2015) Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem. Environ Monit Assess 187:768. https://doi.org/10.1007/s10661-015-4937-0. (PMID: 10.1007/s10661-015-4937-0) ; Alamdar A, Eqani SAMAS, Hanif N, Ali SM, Fasola M, Bokhari H, Katsoyiannis IA, Shen H (2016) Human exposure to trace metals and arsenic via consumption of fish from river Chenab Pakistan and associated health risks. Chemosphere 1(168):1004–1012. ; Alho CJR, Vieira LM (1997) Fish and wildlife resources in the Pantanal wetlands of Brazil and potential disturbances from the release of environmental contaminants. Environ Toxicol Chem 16:71–74. https://doi.org/10.1002/etc.5620160107. (PMID: 10.1002/etc.5620160107) ; Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16:903–917. https://doi.org/10.1007/s10311-018-0734-7. (PMID: 10.1007/s10311-018-0734-7) ; Alvares NYM (2020) Caracterização da dieta de Pimelodus argenteus (Siluriformes, Pimelodidae) oriundos do Rio Miranda, Pantanal, Sul-Matogrossense. Dissertation, Universidade Estadual Paulista “Júlio de Mesquita Filho”. ; Anvisa (1998) Portaria Nº 685, de 27 de Agosto de 1998. Agência Nacional de Vigilância Sanitária, Ministério da Saúde, Brasília, DF, Brazil. Report is available on-line at: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/1998/prt0685_27_08_1998_rep.html . Accessed 05 September 2023. ; ATSDR (2007) Public Health Statement: Barium. Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA. Report is available on-line at: https://www.atsdr.cdc.gov/ToxProfiles/tp24-c1-b.pdf . Accessed 14 september 2023. ; ATSDR (2012) Toxicological profile for manganese Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA. Report is available on-line at: https://www.atsdr.cdc.gov/toxprofiles/tp151.pdf . Accessed 29 September 2023. ; ATSDR (2022a) Substance Priority List. Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA. Report is available on-line at: https://www.atsdr.cdc.gov/spl/index.html . Accessed 14 September 2023. ; ATSDR (2022b) Toxicological profile for barium and barium compounds. Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA. Report is available on-line at: https://www.atsdr.cdc.gov/toxprofiles/tp24.pdf . Accessed 24 September 2023. ; Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:e643972. https://doi.org/10.3389/fphar.2021.643972. (PMID: 10.3389/fphar.2021.643972) ; Balassa GC, Fugi R, Hahn NS, Galina AB (2004) Dieta de espécies de Anostomidae (Teleostei, Characiformes) na área de influência do reservatório de Manso, Mato Grosso, Brasil. Iheringia, Sér Zool 94:77–82. https://doi.org/10.1590/S0073-47212004000100014. (PMID: 10.1590/S0073-47212004000100014) ; Barceloux DG (1999) Manganese. Clin Toxicol 37:293–307. https://doi.org/10.1081/clt-100102427. (PMID: 10.1081/clt-100102427) ; Barnhart J (1997) Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol 26:S3-7. https://doi.org/10.1006/rtph.1997.1132. (PMID: 10.1006/rtph.1997.1132) ; Baruthio F (1992) Toxic effects of chromium and its compounds. Biol Trace Elem Res 32:145–153. https://doi.org/10.1007/bf02784599. (PMID: 10.1007/bf02784599) ; Berry WJ, Boothman WS, Serbst JR, Edwards PA (2004) Predicting the toxicity of chromium in sediments. Environ Toxicol Chem 23:2981–2992. https://doi.org/10.1897/03-599.1. (PMID: 10.1897/03-599.1) ; Cardwell RD, DeForest DK, Brix KV, Adams WJ (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 226. Springer, New York, pp 101–122. ; Catella AC, Campos FLR, Albuquerque SP (2020) Sistema de Controle da Pesca de Mato Grosso do Sul SCPESCA/MS 25 – 2018. Boletim de Pesca e Desenvolvimento 123. Embrapa, Corumbá, MS, Brazil. Report is available on-line at: https://www.imasul.ms.gov.br/wp-content/uploads/2022/04/Boletim-SCPESCA-2018_BP144.pdf . Accessed 18 September 2023. ; Catella AC, Petrere Jr M (1996) Feeding patterns in a fish community of Baia da Onça a floodplain lake of the Aquidauana River Pantanal Brazil. Fish Manage Ecol 3:229–237. https://doi.org/10.1111/j.1365-2400.1996.tb00150.x. (PMID: 10.1111/j.1365-2400.1996.tb00150.x) ; Ceccatto APS, Testoni MC, Ignácio ARA, Santos-Filho M, Malm O, Díez S (2015) Mercury distribution in organs of fish species and the associated risk in traditional subsistence villagers of the Pantanal wetland. Environ Geochem Health 38:713–722. https://doi.org/10.1007/s10653-015-9754-4. (PMID: 10.1007/s10653-015-9754-4) ; Coetzee L, du Preez HH, van Vuren JHJ (2002) Metal concentrations in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifants River, Mpumalanga, South Africa: Zinc, copper, manganese, lead, chromium, nickel, aluminium and iron. Water SA 28:433–448. https://doi.org/10.4314/wsa.v28i4.4917. (PMID: 10.4314/wsa.v28i4.4917) ; Costa ACA (2001) Avaliação de alguns aspectos do passivo ambiental de uma metalurgia de chumbo em Santo Amaro da Purificação, Bahia. Dissertation, Universidade Federal da Bahia. ; Cross FA, Hardy LH, Hones NY, Barber RT (1973) Relation between total body weight and concentrations of manganese, iron, copper, zinc and mercury in white muscle of Bluefish (Pomatomus saltatrix) and a Bathylbemersal fish Amtimora rostrata. J Fish Res Board Cam 30:1285–1291. ; Defarge N, Spiroux de Vendômois J, Séralini GE (2018) Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep 5:156–163. https://doi.org/10.1016/j.toxrep.2017.12.025. (PMID: 10.1016/j.toxrep.2017.12.025) ; DesMarias TL, Costa M (2019) Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1–7. https://doi.org/10.1016/j.cotox.2019.05.003. (PMID: 10.1016/j.cotox.2019.05.003) ; Donald DB (2017) Trophic decline and distribution of barium in a freshwater ecosystem. Hydrobiologia 784:237–247. https://doi.org/10.1007/s10750-016-2878-4. (PMID: 10.1007/s10750-016-2878-4) ; Drake PL, Hazelwood KL (2005) Exposure-related health effects of silver and silver compounds: a review. The Ann Occup Hyg 49:575–585. https://doi.org/10.1093/annhyg/mei019. (PMID: 10.1093/annhyg/mei019) ; Dunlap CE, Alpers CN, Bouse R, Taylor HE, Unruh DM, Flegal AR (2008) The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: evidence from lead isotopes in the Sacramento River, California. Geochim Cosmochim Acta 72:5935–5948. https://doi.org/10.1016/j.gca.2008.10.006. (PMID: 10.1016/j.gca.2008.10.006) ; EFSA (2014) Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. European Food Safety Authority, EFSA Panel on Contaminants in the Food Chain (CONTAM), Parma, EMR, Italy. Report is available on-line at: https://doi.org/10.2903/j.efsa.2014.3845 . Accessed 18 September 2023. ; EFSA (2020) EFSA scientific opinion on lead in food. European Food Safety Authority. Parma, EMR, Italy. Report is available on-line at: https://echa.europa.eu/documents/10162/29254276/06_lead_workshop_d1s2_lead_food_efsa_en.pdf/8baff519-f36c-586f-fd9c-c2b9c8cd964a#:~:text=adults.,-%E2%9D%91%20%E2%80%9CBenchmark%20doses&text=%3D%2012%20%C2%B5g%2FL(B,%C2%B5g%2Fkg%20bw%20per%20day.&text=Previously%20established%20provisional%20tolerable%20weekly,bw%20is%20no%20longer%20appropriate . Accessed 03 October 2023. ; FAO/WHO (1989) Evaluation of certain food additives and contaminants. Technical Report Series 776. Food and Agriculture Organization/World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://iris.who.int/bitstream/handle/10665/39252/WHO_TRS_776.pdf?sequence=1 . Accessed 04 October 2023. ; Ferreira FS, Vicentin W, Costa FES, Súarez YR (2014) Trophic ecology of two piranha species, Pygocentrus nattereri and Serrasalmus marginatus (Characiformes, Characidae), in the floodplain of the Negro River, Pantanal. Acta Limnol Bras 26:381–391. https://doi.org/10.1590/S2179-975X2014000400006. (PMID: 10.1590/S2179-975X2014000400006) ; Fonseca FRD, Malm O, Waldemarin HF (2005) Mercury levels in tissues of giant otters (Pteronura brasiliensis) from the Rio Negro, Pantanal, Brazil. Environ Res 98:368–371. https://doi.org/10.1016/j.envres.2004.11.008. (PMID: 10.1016/j.envres.2004.11.008) ; Froese R, Pauly D (2023) FishBase. World Wide Web electronic publication. www.fishbase.org Accessed 22 August 2023. ; Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782. https://doi.org/10.3390/ijerph17113782. (PMID: 10.3390/ijerph17113782) ; Gu YG, Ning JJ, Kea CL, Huang HH (2018) Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: a case study of the South China Sea. Ecotoxicol Environ Saf 163:551–557. https://doi.org/10.1016/j.ecoenv.2018.07.114. (PMID: 10.1016/j.ecoenv.2018.07.114) ; Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regul Toxicol Pharmacol 68:1–7. https://doi.org/10.1016/j.yrtph.2013.11.002. (PMID: 10.1016/j.yrtph.2013.11.002) ; Henke KR (2009) Arsenic in natural environments. In: Henke KR (ed) Arsenic—environmental chemistry, health threats and waste treatment. Wiley, Chichester, pp 69–236. (PMID: 10.1002/9780470741122.ch3) ; Hylander LD, Pinto FN, Guimarães JR, Meili M, Oliveira LJ, Castro e Silva E (2000) Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters. Sci Total Environ 261:9–20. https://doi.org/10.1016/s0048-9697(00)00591-x. (PMID: 10.1016/s0048-9697(00)00591-x) ; IBGE (2022) Corumbá. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, RJ, Brazil. Report is available on-line at: https://cidades.ibge.gov.br/brasil/ms/corumba . Accessed 15 July 2023. ; IMASUL (2016) Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Miranda. Instituto de Meio Ambiente de Mato Grosso do Sul, Campo Grande, MS, Brazil. Report is available on-line at: https://www.imasul.ms.gov.br/wp-content/uploads/2015/06/Plano-de-Trabalho-Plano-de-Bacia-do-Rio-Miranda.pdf . Accessed 06 October 2023. ; Jabeen G, Javed M, Azmat H (2011) Assessment of heavy metals in the fish collected from the River Ravi, Pakistan. Pak Vet J 32:107–111. ; Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda BN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009. (PMID: 10.2478/intox-2014-0009) ; Jia Y, Wang L, Qu Z, Wang C, Yang Z (2017) Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environ Sci Pollut Res 24:9379–9386. https://doi.org/10.1007/s11356-017-8606-4. (PMID: 10.1007/s11356-017-8606-4) ; Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H (2017) The health effects of aluminum exposure. Dtsch Arztebl Int 114:653–659. https://doi.org/10.3238/arztebl.2017.0653. (PMID: 10.3238/arztebl.2017.0653) ; Leuchtenberger C, Rheingantz ML, Zucco CA, Catella AC, Magnusson WE, Mourão G (2020) Giant otter diet differs between habitats and from fisheries offtake in a large Neotropical floodplain. J Mammal 101:1650–1659. https://doi.org/10.1093/jmammal/gyaa131. (PMID: 10.1093/jmammal/gyaa131) ; Łuczyńska J, Tońska L (2006) The effect of fish size on the content of zinc, iron, copper, and manganese in the muscles of perch (Perca fluvialitis L.) and pike (Esox Lucius L.). Arch Pol Fish 14:5–13. ; Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, Kamyab H (2019) Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: possible human health risks evaluation. Toxicol Rep 6:472–481. https://doi.org/10.1016/j.toxrep.2019.05.012. (PMID: 10.1016/j.toxrep.2019.05.012) ; Meche A, Martins MC, Lofrano BESN, Hardaway CJ, Merchant M, Verdade L (2010) Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchem J 94:171–174. https://doi.org/10.1016/j.microc.2009.10.018. (PMID: 10.1016/j.microc.2009.10.018) ; Muscatello JR, Bennett PM, Himbeault KT, Belknap AM, Janz DM (2006) Larval deformities associated with selenium accumulation in northern pike (Esox lucius) exposed to metal mining effluent. Environ Sci Technol 40:6506–6512. https://doi.org/10.1021/es060661h. (PMID: 10.1021/es060661h) ; NSCFS (2004) Risk assessment of health hazards from lead and other heavy metals migrated from ceramic articles. Report 2004: 13. Norwegian Scientific Committee for Food Safety, Oslo, OEST, Norway. Report is available on-line at: https://vkm.no/download/18.13735ab315cffecbb51376cb/1500297684845/2365ea154a.pdf . Accessed 08 September 2023. ; Oberholster PJ, Myburgh JG, Ashton PJ, Coetzee JJ, Botha A (2012) Bioaccumulation of aluminium and iron in the food chain of Lake Loskop, South Africa. Ecotoxicol Environ Saf 75:134–141. https://doi.org/10.1016/j.ecoenv.2011.08.018. (PMID: 10.1016/j.ecoenv.2011.08.018) ; Paschoalini AL, Bazzoli N (2021) Heavy metals affecting Neotropical freshwater fish: a review of the last 10 years of research. Aquat Toxicol 237:105906. https://doi.org/10.1016/j.aquatox.2021.105906. (PMID: 10.1016/j.aquatox.2021.105906) ; Petkovšek SAS, Grudnik ZM, Pokorny B (2012) Heavy metals and arsenic concentrations in ten fish species from the Šalek lakes (Slovenia): assessment of potential human health risk due to fish consumption. Environ Monit Assess 184:2647–2662. https://doi.org/10.1007/s10661-011-2141-4. (PMID: 10.1007/s10661-011-2141-4) ; Pott A, Damasceno-Junior GA, Silva MP (2014) Características da bacia hidrográfica do rio miranda. GeoPantanal 16:125–140. ; Pourang N, Tanabe S, Rezvani S, Dennis JH (2005) Trace elements accumulation in edible tissues of five sturgeon species from the Caspian Sea. Environ Monit Assess 100:89–108. https://doi.org/10.1007/s10661-005-7054-7. (PMID: 10.1007/s10661-005-7054-7) ; Qadir A, Malik RN (2011) Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol Trace Elem Res 143:1524–1540. https://doi.org/10.1007/s12011-011-9011-3. (PMID: 10.1007/s12011-011-9011-3) ; Quintela FM, Pino SR, Silva FC, Loebmann D, Costa PG, Bianchini A, Martins SE (2019) Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci Total Environ 707:135479. https://doi.org/10.1016/j.scitotenv.2019.135479. (PMID: 10.1016/j.scitotenv.2019.135479) ; Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289:117940. https://doi.org/10.1016/j.envpol.2021.117940. (PMID: 10.1016/j.envpol.2021.117940) ; Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014. (PMID: 10.1016/j.envres.2012.03.014) ; Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep 5:288–295. https://doi.org/10.1016/j.toxrep.2018.01.007. (PMID: 10.1016/j.toxrep.2018.01.007) ; Resende EK, Pereira RAC, Almeida VLL (1998) Peixes herbívoros da planície inundável do rio Miranda, Pantanal, Mato Grosso do Sul, Brasil, Boletim de Pesquisa 10. Embrapa Pantanal, Corumbá. ; Richter L, Hernández AH, Pessôa GS, Arruda MAZ, Rezende-Filho AT, de Almeida RB, Menezes HA, Vallès V, Barbiero L, Fostier A (2019) Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. Sci Total Environ 687:917–928. https://doi.org/10.1016/j.scitotenv.2019.06.147. (PMID: 10.1016/j.scitotenv.2019.06.147) ; Sampaio ACS (2003) Metais pesados na água e sedimentos dos rios da bacia do Alto Paraguai. Dissertation, Universidade Federal de Mato Grosso. ; Santos SA, Nogueira MS, Pinheiro MS, Campos Z, Magnusson WE, Mourão GM (1996) Diets of Caiman crocodilus yacare from diferente habitats in the Brazilian Pantanal. Herpetol J 6:111–117. ; Santos-Filho FM, Lino AS, Malm O, Ignácio ARA (2016) Mercúrio, cromo, cádmio e chumbo em Pygocentrus nattereri Kner, 1858 e Prochilodus lineatus (Valenciennes, 1836) de dois rios do Pantanal (MT), Brasil. Rev Bras Ciênc Ambient 42:67–81. https://doi.org/10.5327/Z2176-9478201600116. (PMID: 10.5327/Z2176-9478201600116) ; Sazima I, Machado FA (1990) Underwater observations of piranhas in western Brazil. Environ Biol Fishes 28:17–31. https://doi.org/10.1007/BF00751026. (PMID: 10.1007/BF00751026) ; Shao L, Jiang Z, Li Z, Chen B, Hayat T, Ahmad B, Alsaed A (2014) Indicators for contaminant transport in wetlands. Ecol Indic 105:544–552. https://doi.org/10.1016/j.ecolind.2018.05.012. (PMID: 10.1016/j.ecolind.2018.05.012) ; Soresini G, Silva FA, Leuchtenberger C, Mourão G (2021) Total mercury concentration in the fur of free-ranging giant otters in a large Neotropical floodplain. Environ Res 198:110483. https://doi.org/10.1016/j.envres.2020.110483. (PMID: 10.1016/j.envres.2020.110483) ; Súarez YR, Lemke AP, Cardoso CAL (2018) Interspecific differentiation in heavy metals concentration in fishes of the Apa River, Upper Paraguay River Basin. Orbital 10:78–82. https://doi.org/10.17807/orbital.v10i1.1040. (PMID: 10.17807/orbital.v10i1.1040) ; U.S. National Institute of Health (2021) Selenium – Fact sheet for health professionals. U.S. National Institute of Health, Bethesda, MD, USA. Report is available on-line at: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/ . Accessed 08 September 2023. ; US Institute of Medicine Panel on Micronutrientes (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academic Press, Washington. ; US National Research Council (2000) Copper in drinking water. National Academies Press, Washington. ; USEPA (2022) Regional Screening Levels (RSLs) - Generic Tables. United States Environmental Protection Agency, Washington, DC, USA. Report is available on-line at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables . Accessed 28 February 2024. ; Varol M, Sünbül MR (2020) Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ Res 184:109298. https://doi.org/10.1016/j.envres.2020.109298. (PMID: 10.1016/j.envres.2020.109298) ; Varol M, Kaçar E, Sünbül MR, Islam ARMT (2022) Species, tissue and gender-related metal and element accumulation in fish species in a large reservoir (Turkey) and health risks and nutritional benefits for consumers. Environ Toxicol Pharmacol 94:103929. https://doi.org/10.1016/j.etap.2022.103929. (PMID: 10.1016/j.etap.2022.103929) ; Viana LF, Súarez YR, Cardoso CAL, Crispim BA, Cavalcante DN, Grisolia AB, Lima-Junior SE (2018) The response of neotropical fish species (Brazil) on the water pollution: metal bioaccumulation and genotoxicity. Arch Environ Contam Toxicol 75:476–485. https://doi.org/10.1007/s00244-018-0551-9. (PMID: 10.1007/s00244-018-0551-9) ; Viana LF, Crispim BA, Kummrow F, Lima NA, Dias MA, Montagner CC, Pereira RHG, Barros A, Barufatti A (2023) Occurrence of contaminants of emerging concern and their risks to the Pantanal Sul-Mato-Grossense aquatic biota. Brazil Chemosfere 337:139429. https://doi.org/10.1016/j.chemosphere.2023.139429. (PMID: 10.1016/j.chemosphere.2023.139429) ; Vieira LM, Nunes VS, Amaral MCA, Oliveira AC, Hauser-Davis RA, Campos RC (2011) Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J Environ Monit 13:280–287. https://doi.org/10.1039/c0em00561d. (PMID: 10.1039/c0em00561d) ; Vieira LM (1991) Avaliação dos níveis de mercúrio na cadeia trófica como indicador de sua biomagnificacão em ambientes aquáticos do Pantanal. Dissertation, Universidade de Brasília. ; Wahiduzzaman M, Islam MM, Sikder AHF, Parveen Z (2021) Bioaccumulation and heavy metal contamination in fish species of the Dhaleswari River of Bangladesh and related human health implications. Biol Trace Elem Res 200:3854–3866. https://doi.org/10.1007/s12011-021-02963-0. (PMID: 10.1007/s12011-021-02963-0) ; Wang XN, Wang ZH, Jiang SJ, Jordan RW, Gu YG (2023) Bioenrichment preference and human risk assessment of arsenic and metals in wild marine organisms from Dapeng (Mirs) Bay. South China Sea Mar Pollut Bull 194:115305. https://doi.org/10.1016/j.marpolbul.2023.115305. (PMID: 10.1016/j.marpolbul.2023.115305) ; Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64. https://doi.org/10.1515/intox-2015-0009. (PMID: 10.1515/intox-2015-0009) ; Weber P, Behr ER, Knorr CDL, Vendruscolo DS, Flores EMM, Dressler VL, Baldisserotto B (2013) Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J 106:61–66. https://doi.org/10.1016/j.microc.2012.05.004. (PMID: 10.1016/j.microc.2012.05.004) ; WHO (1988) Environmental Health Criteria 61, Chromium. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://www.inchem.org/documents/ehc/ehc/ehc61.htm . Accessed 23 September 2023. ; WHO (1990) Environmental Health Criteria 101, Methylmercury. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://www.inchem.org/documents/ehc/ehc/ehc101.htm . Accessed 19 August 2023. ; WHO (1992) Environmental health criteria 134: Cadmium. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://www.inchem.org/documents/ehc/ehc/ehc134.htm . Accessed 20 August 2023. ; WHO (1997) Environmental health criteria 194: Aluminium. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://www.inchem.org/documents/ehc/ehc/ehc194.htm . Accessed 22 August 2023. ; WHO (1998) Environmental Health Criteria 200, Copper. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://www.inchem.org/documents/ehc/ehc/ehc200.htm . Accessed 21 August 2023. ; WHO (2011a) WHO Technical Report Series 959: Evaluation on certain contaminants in food. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: https://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng.pdf?sequence=1 Accessed 08 September 2023. ; WHO (2011b) Guidelines for Drinking-Water Quality, fourth edition. World Health Organization, Geneva, GE, Switzerland. Report is available on-line at: http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf Accessed 03 October 2023. ; Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575e85. https://doi.org/10.1016/j.envpol.2011.06.011. (PMID: 10.1016/j.envpol.2011.06.011) ; Yi J, Tang C, Yi T, Yang Z, Zhang S (2017) Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol Environ Saf 145:295–302. https://doi.org/10.1016/j.ecoenv.2017.07.022. (PMID: 10.1016/j.ecoenv.2017.07.022) ; Yokoo EM, Valente JG, Sichieri R, Silva EC (2001) Validation and calibration of mercury intake through self-referred fish consumption in riverine populations in Pantanal Mato-grossense, Brazil. Environ Res Section 86:88–93. https://doi.org/10.1006/enrs.2001.4241. (PMID: 10.1006/enrs.2001.4241) ; Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.jinorgbio.2019.03.013. (PMID: 10.1016/j.jinorgbio.2019.03.013)
  • Grant Information: EC-99811R-23 National Geographic Society; 317896/2021-0 Instituto Nacional de Pesquisas do Pantanal; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  • Entry Date(s): Date Created: 20240609 Latest Revision: 20240609
  • Update Code: 20240610

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -