Zum Hauptinhalt springen

Investigation of the Inhibitory Effects of Illicium verum Essential Oil Nanoemulsion on Fusarium proliferatum via Combined Transcriptomics and Metabolomics Analysis.

Ling, CQ ; Liao, HX ; et al.
In: Current microbiology, Jg. 81 (2024-05-20), Heft 7, S. 182
academicJournal

Titel:
Investigation of the Inhibitory Effects of Illicium verum Essential Oil Nanoemulsion on Fusarium proliferatum via Combined Transcriptomics and Metabolomics Analysis.
Autor/in / Beteiligte Person: Ling, CQ ; Liao, HX ; Wen, JR ; Nie, HY ; Zhang, LY ; Xu, FR ; Cheng, YX ; Dong, X
Zeitschrift: Current microbiology, Jg. 81 (2024-05-20), Heft 7, S. 182
Veröffentlichung: New York, Springer International., 2024
Medientyp: academicJournal
ISSN: 1432-0991 (electronic)
DOI: 10.1007/s00284-024-03724-7
Schlagwort:
  • Transcriptome
  • Gas Chromatography-Mass Spectrometry
  • Plant Diseases microbiology
  • Plant Diseases prevention & control
  • Gene Expression Profiling
  • Oils, Volatile pharmacology
  • Oils, Volatile chemistry
  • Fusarium drug effects
  • Fusarium genetics
  • Fusarium metabolism
  • Metabolomics
  • Illicium chemistry
  • Antifungal Agents pharmacology
  • Antifungal Agents metabolism
  • Antifungal Agents chemistry
  • Emulsions chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Curr Microbiol] 2024 May 20; Vol. 81 (7), pp. 182. <i>Date of Electronic Publication: </i>2024 May 20.
  • MeSH Terms: Oils, Volatile* / pharmacology ; Oils, Volatile* / chemistry ; Fusarium* / drug effects ; Fusarium* / genetics ; Fusarium* / metabolism ; Metabolomics* ; Illicium* / chemistry ; Antifungal Agents* / pharmacology ; Antifungal Agents* / metabolism ; Antifungal Agents* / chemistry ; Emulsions* / chemistry ; Transcriptome ; Gas Chromatography-Mass Spectrometry ; Plant Diseases / microbiology ; Plant Diseases / prevention & control ; Gene Expression Profiling
  • References: Dong LL, Yao H, Li SQ, Song YJ, Chen LS (2013) Investigation and integrated molecular diagnosis of root-knot nematodes in Panax notoginseng root in the field. Eur J Plant Pathol 137:667–675. https://doi.org/10.1007/s10658-013-0277-5. (PMID: 10.1007/s10658-013-0277-5) ; Imran HM, Muzammil H, Wu YP, Zhang XL, Xiang MC, Liu XZ (2017) Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. Fems Microbiol Ecol 93:1. https://doi.org/10.1093/femsec/fiw222. (PMID: 10.1093/femsec/fiw222) ; Chang KF, Hwang SF, Conner RL, Ahmed HU, Zhou Q, Turnbull GD, Strelkov SE, Mclaren DL, Gossen BD (2015) First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot 67:52–58. https://doi.org/10.1016/j.cropro.2014.09.020. (PMID: 10.1016/j.cropro.2014.09.020) ; Lin YS, Totsuka Y, Shan B, Wang CC, Wei WQ, Qiao YL, Kikuchi S, Inoue M, Tanaka H, He Y (2017) Esophageal cancer in high-risk areas of China: research progress and challenges. Ann Epidemiol 27:215–221. https://doi.org/10.1016/j.annepidem.2016.11.004. (PMID: 10.1016/j.annepidem.2016.11.00428007352) ; Wang L, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z (2022) Genome-wide characterization reveals variation potentially involved in pathogenicity and mycotoxins biosynthesis of Fusarium proliferatum causing spikelet rot disease in rice. Toxins 14:568. https://doi.org/10.3390/toxins14080568. (PMID: 10.3390/toxins14080568360062309414198) ; Li G, Wang Y, Zhang Z, Chen Y, Tian S (2022) Mushroom alcohol controls gray mold caused by Botrytis cinerea in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. Postharvest Biol Technol 186:111843. https://doi.org/10.1016/j.postharvbio.2022.111843. (PMID: 10.1016/j.postharvbio.2022.111843) ; Pan LY, Zhou J, Sun Y, Qiao BX, Wan T, Guo RQ, Zhang J, Shan DQ, Cai YL (2023) Comparative transcriptome and metabolome analyses of cherry leaves spot disease caused by Alternaria alternata. Front Plant Sci 14:1129515. https://doi.org/10.3389/fpls.2023.1129515. (PMID: 10.3389/fpls.2023.1129515368440709947566) ; Hu F, Tu XF, Thakur K, Hu F, Li XL, Zhang YS, Zhang JG, Wei ZJ (2019) Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem Toxicol 134:110821. https://doi.org/10.1016/j.fct.2019.110821. (PMID: 10.1016/j.fct.2019.11082131533060) ; Mutlu-Ingok A, Devecioglu D, Dikmetas DN, Karbancioglu-Guler F, Capanoglu E (2020) Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules 25:4711. https://doi.org/10.3390/molecules25204711. (PMID: 10.3390/molecules25204711330666117587387) ; Yang R, Miao J, Chen X, Chen C, Simal-Gandara J, Chen J, Wan C (2022) Essential oils nano-emulsion confers resistance against Penicillium digitatum in ’Newhall’navel orange by promoting phenylpropanoid metabolism. Ind Crops Prod 187:115297. https://doi.org/10.1016/j.indcrop.2022.115297. (PMID: 10.1016/j.indcrop.2022.115297) ; Bajpai VK, Sharma A, Baek KH (2013) Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 32:582–590. https://doi.org/10.1016/j.foodcont.2013.01.032. (PMID: 10.1016/j.foodcont.2013.01.032) ; Zhe W, Gu Z, Yan S, Wang Y, Huo K (2016) The natural product resveratrol inhibits yeast cell separation by extensively modulating the transcriptional landscape and reprogramming the intracellular metabolome. PLoS ONE 11:e0150156. https://doi.org/10.1371/journal.pone.0150156. (PMID: 10.1371/journal.pone.0150156) ; Li X, Liu M, Huang T, Yang K, Tian J (2020) Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata. Postharvest Biol Technol 171:111343. https://doi.org/10.1016/j.postharvbio.2020.111343. (PMID: 10.1016/j.postharvbio.2020.111343) ; Zhang W, Li B, Lv Y, Wei S, Zhang S, Envelope Y (2023) Transcriptomic analysis shows the antifungal mechanism of honokiol against Aspergillus flavus. Int J Food Microbiol 384:109972. https://doi.org/10.1016/j.ijfoodmicro.2022.109972. (PMID: 10.1016/j.ijfoodmicro.2022.10997236279642) ; Wang GW, Hu WT, Huang BK, Qin LP (2011) Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J Ethnopharmacol 136:10–20. https://doi.org/10.1016/j.jep.2011.04.051. (PMID: 10.1016/j.jep.2011.04.05121549817) ; Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-Anethole. Molecules 15:7558–7569. https://doi.org/10.3390/molecules15117558. (PMID: 10.3390/molecules15117558210309096259245) ; Zeng ZY, Li QQ, Huo YY, Chen CJ, Duan SS, Xu FR, Cheng YX, Dong X (2021) Inhibitory effects of essential oils from Asteraceae plant against pathogenic fungi of Panax notoginseng. J Appl Microbiol 130:592–603. https://doi.org/10.1111/jam.14606. (PMID: 10.1111/jam.1460632026569) ; Pilotti M, Gervasi F, Brunetti A (2005) Molecular identification of Fomitiporia mediterranea and Eutypa lata/Libertella blepharis in Platanus×acerifolia. Phytopathology 153:193–202. https://doi.org/10.1111/j.1439-0434.2005.00. (PMID: 10.1111/j.1439-0434.2005.00) ; Chen CJ, Li QQ, Ma YN, Wang W, Cheng YX, Xu FR, Dong X (2019) Antifungal effect of essential oils from five kinds of rutaceae plants–avoiding pesticide residue and resistance. Chem Biodivers 6:e1800688. https://doi.org/10.1002/cbdv.201800688. (PMID: 10.1002/cbdv.201800688) ; Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF (2020) An overview of micro-and nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nanomaterials 10:135. https://doi.org/10.3390/nano10010135. (PMID: 10.3390/nano10010135319409007023169) ; Long Y, Huang W, Wang Q, Yang G (2020) Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason Sonochem 64:104970. https://doi.org/10.1016/j.ultsonch.2020.104970. (PMID: 10.1016/j.ultsonch.2020.10497032014757) ; Liu XY, Huo YY, Yang J, Li TT, Xu FR, Wan HP, Li JN, Wu CH, Zhang YH, Dong X (2022) Integrated physiological, metabolomic, and proteome analysis of Alpinia officinarum Hance essential oil inhibits the growth of Fusarium oxysporum of Panax notoginseng. Front Microbiol 13:1031474. https://doi.org/10.3389/fmicb.2022.1031474. (PMID: 10.3389/fmicb.2022.1031474364832119724623) ; Huo YY, Li TT, Yang J, Huang HY, Chen CJ, Xu FR, Dong X (2021) Chemical constituents of the essential oil from Cuminum cyminum L. and its antifungal activity against Panax notoginseng pathogens. Chem Biodivers 18:e2100638. https://doi.org/10.1002/cbdv.202100638. (PMID: 10.1002/cbdv.20210063834788487) ; Yang J, Li TT, Huo YY, Huang HY, Meng QH, Xu FR, Dong X (2023) Cymbopogom citratus essential oils: a promising source of antifungals against Panax notoginseng-associated pathogenic fungi. Curr Microbiol 80:17. https://doi.org/10.1007/s00284-022-03119-6. (PMID: 10.1007/s00284-022-03119-6) ; Ma YN, Chen CJ, Li QQ, Wang W, Xu FR, Cheng YX, Dong X (2019) Fungicidal activity of essential oils from Cinnamomum cassia against the pathogenic fungi of Panax notoginseng diseases. Chem Biodivers 16:e1900416. https://doi.org/10.1002/cbdv.201900416. (PMID: 10.1002/cbdv.20190041631631505) ; Carlos G, Fraga BHC, Moore RJ, Zink EM (2010) Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem 82:4165–4173. https://doi.org/10.1021/ac1003568. (PMID: 10.1021/ac1003568) ; Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wold S (2006) Multi-and megavariate data analysis. Part I basic principles and applications. Second revised and enlarged edition. MKS Umetrics AB. https://doi.org/10.1201/b14117-9. (PMID: 10.1201/b14117-9) ; Li QQ, Huo YY, Chen CJ, Zeng ZY, Xu FR, Cheng YX, Dong X (2020) Biological activities of two essential oils from Pogostemon cablin and Eupatorium fortunei and their major components against fungi isolated from Panax notoginseng. Chem Biodivers 17:e2000520. https://doi.org/10.1002/cbdv.202000520. (PMID: 10.1002/cbdv.20200052033184961) ; Khan A, Ahmad A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. Fems Yeast Res 11:114–122. https://doi.org/10.1111/j.1567-1364.2010.00697.x. (PMID: 10.1111/j.1567-1364.2010.00697.x21114624) ; Wang J, Liu H, Zhao J, Gao H, Zhou L, Liu Z, Chen Y, Sui P (2010) Antimicrobial and antioxidant activities of the root bark essential oil of Periploca sepium and its main component 2-hydroxy-4-methoxybenzaldehyde. Molecules 15:5807–5817. https://doi.org/10.3390/molecules15085807. (PMID: 10.3390/molecules15085807207369086257732) ; Uwidia IE, Owolabi BJ, Okafor RC (2020) Extraction, derivatization, characterization and antifungal investigation of limonene from Citrus sinensis peels. Tanz J Sci 46:419–429. ; Morcia C, Malnati M, Terzi V (2012) In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1, 8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam Part A 29:415–422. https://doi.org/10.1080/19440049.2011.643458. (PMID: 10.1080/19440049.2011.643458) ; Cecchini ME, Paoloni C, Campra N, Picco N, Grosso MC, Perez MS, Alustiza F, Cariddi N, Bellingeri R (2021) Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial activity. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e05896. (PMID: 10.1016/j.heliyon.2021.e05896335213477820482) ; Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N (2014) Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem 21:1044–1049. https://doi.org/10.1016/j.ultsonch.2013.10.021. (PMID: 10.1016/j.ultsonch.2013.10.02124262758) ; de Oca-Ávalos JMM, Candal RJ, Herrera ML (2017) Nanoemulsions: stability and physical properties. Curr Opin Food Sci 16:1–6. https://doi.org/10.1016/j.cofs.2017.06.003. (PMID: 10.1016/j.cofs.2017.06.003) ; Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ (2020) Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 25:3955. https://doi.org/10.3390/molecules25173955. (PMID: 10.3390/molecules25173955328726047504760) ; Nazzaro F, Fratianni F, Coppola R, De FV (2017) Essential oils and antifungal activity. Pharmaceuticals 10:86. https://doi.org/10.3390/ph10040086. (PMID: 10.3390/ph10040086290990845748643) ; Álvarez-Martínez F, Barrajón-Catalán E, Herranz-López M, Micol V (2021) Antibacterial plant compounds, extracts and essential oils: an updated review on their effects and putative mechanisms of action. Pharmaceuticals 90:153626. https://doi.org/10.1016/j.phymed.2021.153626. (PMID: 10.1016/j.phymed.2021.153626) ; Lu M, Han ZQ, Xu Y, Yao L (2012) Effects of essential oils from Chinese indigenous aromatic plants on mycelial growth and morphogenesis of three phytopathogens. Flavour Frag J 28:84–92. https://doi.org/10.1002/ffj.3132. (PMID: 10.1002/ffj.3132) ; Cissé MM, Mbaye N, Diédhiou PM (2020) In vitro antifungal activity of essential oils of aromatic plants of the senegalese flora on Colletotrichum gloeosporioides (Penz.) Penz and Sacc., the causal agent of Mango anthracnose. Int J Environ Sci Technol (Tehran) 9:301–311. ; Donsì F, Annunziata M, Vincensi M, Ferrari G (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350. https://doi.org/10.1016/j.jbiotec.2011.07.001. (PMID: 10.1016/j.jbiotec.2011.07.00121763730) ; Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG (2015) The role of transcriptional ‘futile cycles’ in autophagy and microbial pathogenesis. Microbial Cell 2:302. (PMID: 10.15698/mic2015.08.221283573065349103) ; Plesofsky N, Higgins L, Markowski T, Brambl R (2016) Glucose starvation alters heat shock response, leading to death of wild type cells and survival of MAP kinase signaling mutant. PLoS ONE 11:e0165980. https://doi.org/10.1371/journal.pone.0165980. (PMID: 10.1371/journal.pone.0165980278708695117620) ; Chen CQ, Long L, Zhang FS, Chen Q, Chen C, Yu XR, Liu QY, Bao JK, Long ZF (2018) Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS ONE 13:e0194284. https://doi.org/10.1371/journal.pone.0194284. (PMID: 10.1371/journal.pone.0194284295438595854386) ; Toledano MB, Kumar C, Le MN, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581:3598–3607. https://doi.org/10.1016/j.febslet.2007.07.002. (PMID: 10.1016/j.febslet.2007.07.00217659286) ; Shi F, Kawai S, Mori S, Kono E, Murata K (2005) Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP (H) in Saccharomyces cerevisiae. FEBS Lett 272:3337–3349. https://doi.org/10.1111/j.1742-4658.2005.04749.x. (PMID: 10.1111/j.1742-4658.2005.04749.x) ; Cordeiro AT (2019) Nadph producing enzymes as promising drug targets for chagas disease. Curr Med Chem 26:6564–6571. https://doi.org/10.2174/0929867325666181009152844. (PMID: 10.2174/092986732566618100915284430306853) ; Xu YJ, Luo F, Gao Q, Shang Y, Wang C (2015) Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem 407:4815–4821. https://doi.org/10.1007/s00216-015-8648-8. (PMID: 10.1007/s00216-015-8648-825895944) ; Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A (2021) Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol 186:836–852. https://doi.org/10.1093/plphys/kiab127. (PMID: 10.1093/plphys/kiab127337243988195505) ; Shih L, Pan K, Hsieh C (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem 41:1129–1135. https://doi.org/10.1016/j.procbio.2005.12.005. (PMID: 10.1016/j.procbio.2005.12.005) ; Zan XY, Wu XH, Cui FJ, Zhu HA, Sun WJ, Jiang LH, Tao TL, Zhao X (2020) UDP-glucose pyrophosphorylase gene affects mycelia growth and polysaccharide synthesis of Grifola frondosa. Int J Biol Macromol 161:1161–1170. https://doi.org/10.1016/j.ijbiomac.2020.06.139. (PMID: 10.1016/j.ijbiomac.2020.06.13932561281) ; Wu CH, Rismondo J, Morgan RM, Shen Y, Loessner MJ, Larrouy-Maumus G, Freemont PS, Gründling A (2021) Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. J Biol Chem 296:100384. https://doi.org/10.1016/j.jbc.2021.100384. (PMID: 10.1016/j.jbc.2021.100384335563707961091)
  • Grant Information: 82060683 the National Natural Science Foundation of China; 202301AW070008 Yunnan Provincial Science and Technology Plan-Basic Research Project
  • Entry Date(s): Date Created: 20240520 Date Completed: 20240520 Latest Revision: 20240628
  • Update Code: 20240628

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -