Zum Hauptinhalt springen

The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third.

Mrnjavac, N ; Nagies, FSP ; et al.
In: FEBS letters, 2024-05-15
academicJournal

Titel:
The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third.
Autor/in / Beteiligte Person: Mrnjavac, N ; Nagies, FSP ; Wimmer, JLE ; Kapust, N ; Knopp, MR ; Trost, K ; Modjewski, L ; Bremer, N ; Mentel, M ; Esposti, MD ; Mizrahi, I ; Allen, JF ; Martin, WF
Zeitschrift: FEBS letters, 2024-05-15
Veröffentlichung: Ahead of Print, 2024
Medientyp: academicJournal
ISSN: 1873-3468 (electronic)
DOI: 10.1002/1873-3468.14906
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [FEBS Lett] 2024 May 15. <i>Date of Electronic Publication: </i>2024 May 15.
  • References: Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66, 3811–3826. ; Fischer WW, Hemp J and Johnson JE (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci 44, 647–683. ; Demoulin CF, Lara YJ, Lambion A and Javaux EJ (2024) Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis. Nature 625, 529–534. ; Borden WT, Hoffmann R, Stuyver T and Chen B (2017) Dioxygen: what makes this triplet diradical kinetically persistent? J Am Chem Soc 139, 9010–9018. ; Buckel W and Golding BT (2006) Radical enzymes in anaerobes. Annu Rev Microbiol 60, 27–49. ; Lu Z and Imlay JA (2021) When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defense. Nat Rev Microbiol 19, 774–785. ; Schmidt‐Rohr K (2015) Why combustions are always exothermic, yielding about 418 kJ per mole of O2. J Chem Educ 92, 2094–2099. ; Brewer L (1952) The thermodynamic properties of the oxides and their vaporization processes. Chem Rev 52, 1–75. ; Khademian M and Imlay JA (2021) How microbes evolved to tolerate oxygen. Trends Microbiol 29, 428–440. ; Lyons TW, Reinhard CT and Planavsky NJ (2014) The rise of oxygen in Earth's early ocean and atmosphere. Nature 50, 307–315. ; Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR and Porada P (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci USA 113, 9704–9709. ; Allen JF, Thake B and Martin WF (2019) Nitrogenase inhibition limited oxygenation of Earth's proterozoic atmosphere. Trends Plant Sci 24, 1022–1031. ; Mills DB, Boyle RA, Daines SJ, Sperling EA, Pisani D, Donoghue PCJ and Lenton TM (2022) Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 6, 520–532. ; Mukherjee I, Large RR, Corkrey R and Danyushevsky LV (2018) The boring billion, a slingshot for complex life on Earth. Sci Rep 8, 4432. ; Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP and Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59. ; Blaser MB, Dreisbach LK and Conrad R (2013) Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2. Appl Environ Microbiol 79, 1787–1794. ; Arndt NT and Nisbet EG (2012) Processes on the young Earth and the habitats of early life. Annu Rev Earth Planet Sci 40, 521–549. ; Martin WF, Tielens AGM and Mentel M (2020) Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution. De Gruyter, Berlin. ; Kanehisa M and Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. ; Nagies FSP, Brueckner J, Tria FDK and Martin WF (2020) A spectrum of verticality across genes. PLoS Genet 16, e1009200. ; Enright AJ, van Dongen S and Ouzounis CA (2002) An efficient algorithm for large‐scale detection of protein families. Nucleic Acids Res 30, 1575–1584. ; Brueckner J and Martin WF (2020) Bacterial genes outnumber archaeal genes in eukaryotic genomes. Genome Biol Evol 12, 282–292. ; Buchfink B, Xie C and Huson D (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12, 59–60. ; Flamholz A, Noor E, Bar‐Even A and Milo R (2012) eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res 40, D770–D775. ; Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, Neumann‐Schaal M, Jahn D and Schomburg D (2021) BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res 49, D498–D508. ; Welch BL (1947) The generalization of “Student's” problem when several different population variances are involved. Biometrika 34, 28–35. ; Sousa FL, Alves RJ, Pereira‐Leal JB, Teixeira M and Pereira MM (2011) A bioinformatics classifier and database for heme‐copper oxygen reductases. PLoS One 6, e19117. ; Sousa FL, Nelson‐Sathi S and Martin WF (2016) One step beyond a ribosome: the ancient anaerobic core. Biochim Biophys Acta 1857, 1027–1038. ; Jabłońska J and Tawfik DS (2019) The number and type of oxygen‐utilizing enzymes indicates aerobic vs. anaerobic phenotype. Free Radic Biol Med 140, 84–92. ; Li C, Huang J, Ding L, Liu X, Han D and Huang J (2021) Estimation of oceanic and land carbon sinks based on the most recent oxygen budget. Earth's Future 9, e2021EF002124. ; Ducluzeau A‐L, van Lis R, Duval S, Schoepp‐Cothenet B, Russell MJ and Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34, 9–15. ; Pereira MM, Santana M and Teixeira M (2001) A novel scenario for the evolution of haem–copper oxygen reductases. Biochim Biophys Acta 1505, 185–208. ; Murali R, Hemp J and Gennis RB (2022) Evolution of quinol oxidation within the heme‐copper oxidoreductase superfamily. Biochim Biophys Acta Bioenerg 1863, 148907. ; Murali R, Gennis RB and Hemp J (2021) Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA’ in Archaea. ISME J 15, 3534–3548. ; Borisov VB, Gennis RB, Hemp J and Verkhovsky MI (2011) The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta Bioenerg 1807, 1398–1413. ; Degli Esposti M, Rosas‐Pérez T, Servín‐Garcidueñas LE, Bolaños LM, Rosenblueth M and Martínez‐Romero E (2015) Molecular evolution of cytochrome bd oxidases across proteobacterial genomes. Genome Biol Evol 7, 801–820. ; Atteia A, van Lis R, van Hellemond JJ, Tielens AGM, Martin W and Henze K (2004) Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). Gene 330, 143–148. ; Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P and Polticelli F (2016) Molecular evolution of alternative oxidase proteins: a phylogenetic and structure modeling approach. J Mol Evol 82, 207–218. ; del Giorgio PA and Duarte CM (2002) Respiration in the open ocean. Nature 420, 379–384. ; Rolfe DF and Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77, 731–758. ; Erb TJ and Zarzycki J (2018) A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme. Curr Opin Biotechnol 49, 100–107. ; Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65, 631–658. ; Berg IA, Kockelkorn D, Ramos‐Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE and Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8, 447–460. ; Aono R, Sato T, Yano A, Yoshida S, Nishitani Y, Miki K, Imanaka T and Atomi H (2012) Enzymatic characterization of AMP phosphorylase and ribose‐1,5‐bisphosphate isomerase functioning in an archaeal AMP metabolic pathway. J Bacteriol 194, 6847–6855. ; Aono R, Sato T, Imanaka T and Atomi H (2015) A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat Chem Biol 11, 355–360. ; Schönheit P, Buckel W and Martin WF (2016) On the origin of heterotrophy. Trends Microbiol 24, 12–25. ; Thauer RK, Jungermann K and Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41, 100–180. ; Muller YA and Schulz GE (1993) Structure of the thiamine‐ and flavin‐dependent enzyme pyruvate oxidase. Science 259, 965–967. ; Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven, CT. ; Rytkönen KT (2018) Evolution: oxygen and early animals. Elife 7, e34756. ; Degli Esposti M, Mentel M, Martin W and Sousa FL (2019) Oxygen reductases in alphaproteobacterial genomes: physiological evolution from low to high oxygen environments. Front Microbiol 10, 499. ; Brochier‐Armanet C, Talla E and Gribaldo S (2009) The multiple evolutionary history of dioxygen reductases: implications for the origin and evolution of aerobic respiration. Mol Biol Evol 26, 285–297. ; Allen JF (1993) Redox control of transcription – sensors, response regulators, activators and repressors. FEBS Lett 332, 203–207. ; Unden G and Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta Bioenerg 1320, 217–234. ; Brown AN, Anderson MT, Bachman MA and Mobley HLT (2022) The ArcAB two‐component system: function in metabolism, redox control, and infection. Microbiol Mol Biol Rev 86, e00110‐21. ; Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264, 7761–7764. ; Vaillancourt FH, Bolin JT and Eltis LD (2006) The ins and outs of ring‐cleaving dioxygenases. Crit Rev Biochem Mol Biol 41, 241–267. ; Gaweska H and Fitzpatrick PF (2011) Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2, 365–377. ; Fuchs G, Boll M and Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9, 803–816. ; Vanoni MA (2021) Iron‐sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 11, 210010. ; Huwiler SG, Löffler C, Anselmann SEL, Stärk HJ, von Bergen M, Flechsler J, Rachel R and Boll M (2019) One‐megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window. Proc Natl Acad Sci USA 116, 2259–2264. ; Fuchs G (2008) Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125, 82–99. ; Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57, 395–418. ; Schlesier J, Rohde M, Gerhardt S and Einsle O (2016) A conformational switch triggers nitrogenase protection from oxygen damage by Shethna protein II (FeSII). J Am Chem Soc 138, 239–247. ; Ragsdale SW (2003) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103, 2333–2346. ; Boyd ES, Thomas KM, Dai Y, Boyd JM and Outten FW (2014) Interplay between oxygen and Fe‐S cluster biogenesis: insights from the Suf pathway. Biochemistry 53, 5834–5847. ; Khoroshilova N, Popescu C, Münck E, Beinert H and Kiley PJ (1997) Iron‐sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe‐4S] to [2Fe‐2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94, 6087–6092. ; Pan N and Imlay JA (2001) How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron. Mol Microbiol 39, 1562–1571. ; Orme‐Johnson WH and Beinert H (1969) On the formation of the superoxide anion radical during the reaction of reduced iron‐sulfur proteins with oxygen. Biochem Biophys Res Commun 36, 905–911. ; Allen JF (1975) A two‐step mechanism for the photosynthetic reduction of oxygen by ferredoxin. Biochem Biophys Res Commun 66, 36–43. ; Imlay JA (2006) Iron‐sulphur clusters and the problem with oxygen. Mol Microbiol 59, 1073–1082. ; Tiedt O, Fuchs J, Eisenreich W and Boll M (2018) A catalytically versatile benzoyl‐CoA reductase, key enzyme in the degradation of methyl‐ and halobenzoates in denitrifying bacteria. J Biol Chem 293, 10264–10274. ; Chew AGM and Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61, 113–129. ; Czekster CM and Blanchard JS (2012) One substrate, five products: reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis. J Am Chem Soc 134, 19758–19771. ; Sousa FL, Alves RJ, Ribeiro MA, Pereira‐Leal JB, Teixeira M and Pereira MM (2012) The superfamily of heme‐copper oxygen reductases: types and evolutionary considerations. Biochim Biophys Acta 1817, 629–637. ; Degli Esposti M (2020) On the evolution of cytochrome oxidases consuming oxygen. Biochim Biophys Acta Bioenerg 1861, 148304. ; Nicholls P (1975) The effect of sulfide on cytochrome aa3. Isosteric and allosteric shifts of the reduced α‐peak. Biochim Biophys Acta 396, 24–35. ; Nicholls P, Marshall DC, Cooper CE and Wilson MT (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41, 1312–1316. ; Forte E, Borisov VB, Falabella M, Colaço HG, Tinajero‐Trejo M, Poole RK, Vicente JB, Sarti P and Giuffrè A (2016) The terminal oxidase cytochrome bd promotes sulfide‐resistant bacterial respiration and growth. Sci Rep 6, 23788. ; Korshunov S, Imlay KRC and Imlay JA (2016) The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol 101, 62–77. ; Tehrani HS and Moosavi‐Movahedi AA (2018) Catalase and its mysteries. Prog Biophys Mol Biol 140, 5–12. ; Khmelevtsova LE, Sazykin IS, Azhogina TN and Sazykina MA (2020) Prokaryotic peroxidases and their application in biotechnology (review). Appl Biochem Microbiol 56, 373–380. ; Bafana A, Dutt S, Kumar A, Kumar S and Ahuja PS (2011) The basic and applied aspects of superoxide dismutase. J Mol Catal B: Enzym 68, 129–138. ; Raymond J and Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767. ; Jabłońska J and Tawfik DS (2021) The evolution of oxygen‐utilizing enzymes suggests early biosphere oxygenation. Nat Ecol Evol 5, 442–448. ; Dagan T and Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104, 870–875. ; Dagan T, Artzy‐Randrup Y and Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA 105, 10039–10044. ; Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR and Warren MJ (2017) Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol Mol Biol Rev 81, e00048‐16. ; Bryant DA, Hunter CN and Warren MJ (2020) Biosynthesis of the modified tetrapyrroles—the pigments of life. J Biol Chem 295, 6888–6925. ; Raymond J and Blankenship RE (2005) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2, 199–203. ; Ollagnier‐de Choudensa S, Loiseau L, Sanakis Y, Barras F and Fontecave M (2005) Quinolinate synthetase, an iron–sulfur enzyme in NAD biosynthesis. FEBS Lett 579, 3737–3743. ; Mukherjee T, Hanes J, Tews I, Ealick SE and Begley TP (2011) Pyridoxal phosphate: biosynthesis and catabolism. Biochim Biophys Acta Proteins Proteomics 1814, 1585–1596. ; Degli Esposti M (2017) A journey across genomes uncovers the origin of ubiquinone in cyanobacteria. Genome Biol Evol 9, 3039–3053. ; Pelosi L, Vo CD, Abby SS, Loiseau L, Rascalou B, Hajj Chehade M, Faivre B, Goussé M, Chenal C, Touati N et al. (2019) Ubiquinone biosynthesis over the entire O2 range: characterization of a conserved O2‐independent pathway. MBio 10, e01319‐19. ; Leonardi R, Fairhurst SA, Kriek M, Lowe DJ and Roach PL (2003) Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett 539, 95–99. ; Settembre EC, Dorrestein PC, Park JH, Augustine AH, Begley TP and Ealick SE (2003) Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis. Biochemistry 42, 2971–2981. ; Klinman JP (2001) Life as aerobes: are there simple rules for activation of dioxygen by enzymes? J Biol Inorg Chem 6, 1–13. ; Huang X and Groves JT (2018) Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem Rev 118, 2491–2553. ; Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW and Mattevi A (2018) Same substrate, many reactions: oxygen activation in flavoenzymes. Chem Rev 118, 1742–1769. ; Wongnate T, Surawatanawong P, Visitsatthawong S, Sucharitakul J, Scrutton NS and Chaiven P (2014) Proton‐coupled electron transfer and adduct configuration are important for C4a‐hydroperoxyflavin formation and stabilization in a flavoenzyme. J Am Chem Soc 136, 241–253. ; Wang Y, Li J and Liu A (2017) Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J Biol Inorg Chem 22, 395–405. ; Barry SM and Challis GL (2013) Mechanism and catalytic diversity of Rieske non‐heme iron‐dependent oxygenases. ACS Catal 3, 2362–2370. ; Kim J and Almo SC (2013) Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. BMC Struct Biol 13, 1–13. ; Widboom PF, Fielding EN, Liu Y and Bruner SD (2007) Structural basis for cofactor‐independent dioxygenation in vancomycin biosynthesis. Nature 447, 342–345. ; Frerichs‐Deeken U, Ranguelova K, Kappl R, Hüttermann J and Fetzner S (2004) Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1 H‐3‐hydroxy‐4‐oxoquinaldine 2, 4‐dioxygenase involving general base catalysis by histidine 251 and single‐electron oxidation of the substrate dianion. Biochemistry 43, 14485–14499. ; Baas BJ, Poddar H, Geertsema EM, Rozeboom HJ, de Vries MP, Permentier HP, Thunnissen AMWH and Poelarends GJ (2015) Functional and structural characterization of an unusual cofactor‐independent oxygenase. Biochemistry 54, 1219–1232. ; Tcherkez G (2016) The mechanism of Rubisco‐catalysed oxygenation. Plant Cell Environ 39, 983–997. ; Luo G, Ono S, Beukes NJ, Wang DT, Xie S and Summons RE (2016) Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci Adv 2, e1600134. ; He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, Li Y and Konhauser KO (2021) An abiotic source of Archean hydrogen peroxide and oxygen that pre‐dates oxygenic photosynthesis. Nat Commun 12, 6611. ; He H, Wu X, Zhu J, Lin M, Lv Y, Xian H, Yang Y, Lin X, Li S, Li Y et al. (2023) A mineral‐based origin of Earth's initial hydrogen peroxide and molecular oxygen. Proc Natl Acad Sci USA 120, e2221984120. ; Stone J, Edgar JO, Gould JA and Telling J (2022) Tectonically‐driven oxidant production in the hot biosphere. Nat Commun 13, 4529. ; Carpena X, Loprasert S, Mongkolsuk S, Switala J, Loewen PC and Fita I (2003) Catalase‐peroxidase KatG of Burkholderia pseudomallei at 1.7A resolution. J Mol Biol 327, 475–489. ; Brioukhanov AL and Netrusov AI (2007) Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol 43, 567–582. ; Harada M, Akiyama A, Furukawa R, Yokobori S, Tajika E and Yamagishi A (2021) Evolution of superoxide dismutases and catalases in cyanobacteria: occurrence of the antioxidant enzyme genes before the rise of atmospheric oxygen. J Mol Evol 89, 527–543. ; Koppenol WH and Sies H (2024) Was hydrogen peroxide present before the arrival of oxygenic photosynthesis? The important role of iron(II) in the Archean ocean. Redox Biol 69, 103012. ; Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J et al. (2007) A whiff of oxygen before the great oxidation event? Science 317, 1903–1906. ; Slotznick SP, Johnson JE, Rasmussen B, Raub TD, Webb SM, Zi JW, Kirschvink JL and Fischer WW (2022) Reexamination of 2.5‐Ga “whiff” of oxygen interval points to anoxic ocean before GOE. Sci Adv 8, eabj7190. ; Anbar AD, Buick R, Gordon GW, Johnson AC, Kendall B, Lyons TW, Ostrander CM, Planavsky NJ, Reinhard CT and Stüeken EE (2023) Technical comment on “reexamination of 2.5‐Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE”. Sci Adv 9, eabq3736. ; Slotznick SP, Johnson JE, Rasmussen B, Raub TD, Webb SM, Zi J‐W, Kirschvink JL and Fischer WW (2023) Response to comment on “reexamination of 2.5‐Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE”. Sci Adv 9, eadg1530. ; Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW and Lyons TW (2014) Low mid‐proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638. ; Zimorski V, Mentel M, Tielens AGM and Martin WF (2019) Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 140, 279–294. ; Budd GE (2008) The earliest fossil record of the animals and its significance. Philos Trans R Soc B 363, 1425–1434. ; Brocks JJ, Nettersheim BJ, Adam P, Schaeffer P, Jarrett AJM, Güneli N, Liyanage T, van Maldegem LM, Hallmann C and Hope JM (2023) Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773. ; Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R‐Y, van der Giezen M, Tielens AGM and Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76, 444–495. ; Towe KM (1970) Oxygen collagen priority and early metazoan fossil record. Proc Natl Acad Sci USA 65, 781–788. ; Harrison JF, Kaiser A and van den Brooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B 277, 1937–1946. ; Gould SB, Garg SG, Handrich M, Nelson‐Sathi S, Gruenheit N, Tielens AGM and Martin WF (2019) Adaptation to life on land at high O2 via transition from ferredoxin‐to NADH‐dependent redox balance. Proc Biol Sci 286, 20191491. ; Hu Y and Ribbe MW (2015) Nitrogenase and homologs. J Biol Inorg Chem 20, 435–445. ; Szenk M, Dill KA and de Graff ARM (2017) Why do fast‐growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst 5, 95–104. ; Tran QH and Unden G (1998) Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 251, 538–543. ; Pfeiffer T and Morley A (2014) An evolutionary perspective on the Crabtree effect. Front Mol Biosci 1, 00017. ; Han H, Hemp J, Pace LA, Ouyang H, Ganesan K, Roh JH, Daldal F, Blanke SR and Gennis RB (2011) Adaptation of aerobic respiration to low O2 environments. Proc Natl Acad Sci USA 108, 14109–14114. ; Arnold BJ, Huang IT and Hanage WP (2021) Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20, 206–218. ; Osborne JP and Gennis RB (1999) Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. Biochim Biophys Acta 1410, 32–50. ; Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson‐Sathi S and Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1, 1–8. ; Wimmer JLE, Xavier JC, Vieira ADN, Pereira DPH, Leidner J, Sousa FL, Kleinermanns K, Preiner M and Martin WF (2021) Energy at origins: favorable thermodynamics of biosynthetic reactions in the last universal common ancestor (LUCA). Front Microbiol 12, 793664. ; Jasniewski AJ, Sickerman NS, Hu Y and Ribbe MW (2018) The Fe protein: an unsung hero of nitrogenase. Inorganics 6, 25.
  • Grant Information: 1426/23-1 German-Israeli Project Cooperation (DIP); 2476/2-1 German-Israeli Project Cooperation (DIP); 96742 Volkswagen Foundation; 101018894 H2020 European Research Council; 1/0457/24 Scientific Grant Agency of the Ministry of Education of the Slovak Republic (VEGA); MA 1426/21-1 Deutsche Forschungsgemeinschaft
  • Contributed Indexing: Keywords: aerobic metabolism; evolution of aerobes; evolution of respiration; great oxidation event; lateral gene transfer; oxygen inhibition
  • Entry Date(s): Date Created: 20240515 Latest Revision: 20240515
  • Update Code: 20240516

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -