Zum Hauptinhalt springen

Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights.

Moeckel, C ; Mouratidis, I ; et al.
In: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 46 (2024-07-01), Heft 7, S. e2300210
academicJournal

Titel:
Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights.
Autor/in / Beteiligte Person: Moeckel, C ; Mouratidis, I ; Chantzi, N ; Uzun, Y ; Georgakopoulos-Soares, I
Zeitschrift: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 46 (2024-07-01), Heft 7, S. e2300210
Veröffentlichung: <2005->: Hoboken, N.J. : Wiley ; <i>Original Publication</i>: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-, 2024
Medientyp: academicJournal
ISSN: 1521-1878 (electronic)
DOI: 10.1002/bies.202300210
Schlagwort:
  • Humans
  • Computational Biology methods
  • Transcription Factors metabolism
  • Transcription Factors genetics
  • Gene Expression Regulation genetics
  • Animals
  • Regulatory Elements, Transcriptional genetics
  • CRISPR-Cas Systems genetics
  • Gene Regulatory Networks
  • Machine Learning
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Bioessays] 2024 Jul; Vol. 46 (7), pp. e2300210. <i>Date of Electronic Publication: </i>2024 May 08.
  • MeSH Terms: CRISPR-Cas Systems* / genetics ; Gene Regulatory Networks* ; Machine Learning* ; Humans ; Computational Biology / methods ; Transcription Factors / metabolism ; Transcription Factors / genetics ; Gene Expression Regulation / genetics ; Animals ; Regulatory Elements, Transcriptional / genetics
  • References: Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling‐Sun, S., Johnson, A. K., Canfield, T. K., Giste, E., Diegel, M., & Stamatoyannopoulos, J. A. (2012). Systematic localization of common disease‐associated variation in regulatory DNA. Science, 337, 1190–1195. ; Chatterjee, S., & Ahituv, N. (2017). Gene regulatory elements, major drivers of human disease. Annual Review of Genomics and Human Genetics, 18, 45–63. ; Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., Mccarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753. ; He, B., & Tan, K. (2016). Understanding transcriptional regulatory networks using computational models. Current Opinion in Genetics & Development, 37, 101–108. ; Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J., & Stolovitzky, G. (2012). Wisdom of crowds for robust gene network inference. Nature Methods, 9, 796–804. ; Yang, B., Bao, W., Chen, B., & Song, D. (2022). Single_cell_GRN: Gene regulatory network identification based on supervised learning method and Single‐cell RNA‐seq data. BioData Mining, 15, 13. ; Gao, P., Uzun, Y., He, B., Salamati, S. E., Coffey, J. K. M., Tsalikian, E., & Tan, K. (2019). Risk variants disrupting enhancers of T1 and T cells in type 1 diabetes. PNAS, 116, 7581–7590. ; Cooper, Y. A., Guo, Q., & Geschwind, D. H. (2022). Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 31, R84–R96. ; Galas, D. J., & Schmitz, A. (1978). DNAse footprinting: A simple method for the detection of protein‐DNA binding specificity. Nucleic Acids Research, 5, 3157–3170. ; Meuleman, W., Muratov, A., Rynes, E., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Teodosiadis, A., Reynolds, A., Haugen, E., Nelson, J., Johnson, A., Frerker, M., Buckley, M., Sandstrom, R., Vierstra, J., Kaul, R., & Stamatoyannopoulos, J. (2020). Index and biological spectrum of human DNase I hypersensitive sites. Nature, 584, 244–251. ; Jolma, A., Kivioja, T., Toivonen, J., Cheng, L., Wei, G., Enge, M., Taipale, M., Vaquerizas, J. M., Yan, J., Sillanpää, M. J., Bonke, M., Palin, K., Talukder, S., Hughes, T. R., Luscombe, N. M., Ukkonen, E., & Taipale, J. (2010). Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Research, 20, 861–873. ; Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K. R., Rastas, P., Morgunova, E., Enge, M., Taipale, M., Wei, G., Palin, K., Vaquerizas, J. M., Vincentelli, R., Luscombe, N. M., Hughes, T. R., Lemaire, P., Ukkonen, E., Kivioja, T., & Taipale, J. (2013). DNA‐binding specificities of human transcription factors. Cell, 152, 327–339. ; Borys, S. M., & Younger, S. T. (2020). Identification of functional regulatory elements in the human genome using pooled CRISPR screens. BMC Genomics [Electronic Resource], 21, 107. ; Canver, M. C., Smith, E. C., Sher, F., Pinello, L., Sanjana, N. E., Shalem, O., Chen, D. D., Schupp, P. G., Vinjamur, D. S., Garcia, S. P., Luc, S., Kurita, R., Nakamura, Y., Fujiwara, Y., Maeda, T., Yuan, G.‐C., Zhang, F., Orkin, S. H., & Bauer, D. E. (2015). BCL11A enhancer dissection by Cas9‐mediated in situ saturating mutagenesis. Nature, 527, 192–197. ; Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA‐guided activation of endogenous human genes. Nature Methods, 10, 977–979. ; Fulco, C. P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S. R., Perez, E. M., Kane, M., Cleary, B., Lander, E. S., & Engreitz, J. M. (2016). Systematic mapping of functional enhancer‐promoter connections with CRISPR interference. Science, 354, 769–773. ; Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., Hilton, J. A., Jain, K., Baymuradov, U. K., Narayanan, A. K., Onate, K. C., Graham, K., Miyasato, S. R., Dreszer, T. R., Strattan, J. S., Jolanki, O., Tanaka, F. Y., & Cherry, J. M. (2018). The Encyclopedia of DNA elements (ENCODE): Data portal update. Nucleic Acids Research, 46, D794–D801. ; Castro‐Mondragon, J. A., Riudavets‐Puig, R., Rauluseviciute, I., Berhanu Lemma, R., Turchi, L., Blanc‐Mathieu, R., Lucas, J., Boddie, P., Khan, A., Manosalva Pérez, N., Fornes, O., Leung, T. Y., Aguirre, A., Hammal, F., Schmelter, D., Baranasic, D., Ballester, B., Sandelin, A., Lenhard, B., & Mathelier, A. (2022). JASPAR 2022: The 9th release of the open‐access database of transcription factor binding profiles. Nucleic Acids Research, 50, D165–D173. ; Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro‐Montero, A., Drewe, P., Najafabadi, H. S., Lambert, S. A., Mann, I., Cook, K., Zheng, H., Goity, A., Van Bakel, H., Lozano, J.‐C., Galli, M., Lewsey, M. G., Huang, E., Mukherjee, T., Chen, X., & Hughes, T. R. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell, 158, 1431–1443. ; Hammal, F., De Langen, P., Bergon, A., Lopez, F., & Ballester, B. (2022). ReMap 2022: A database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA‐binding sequencing experiments. Nucleic Acids Research, 50, D316–D325. ; Puig, R. R., Boddie, P., Khan, A., Castro‐Mondragon, J. A., & Mathelier, A. (2021). UniBind: Maps of high‐confidence direct TF‐DNA interactions across nine species. BMC Genomics [Electronic Resource], 22, 482. ; Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan, C. G., Kinney, J. B., Kellis, M., Lander, E. S., & Mikkelsen, T. S. (2012). Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nature Biotechnology, 30, 271–277. ; Arnold, C. D., Gerlach, D., Stelzer, C., Boryń, Ł. M., Rath, M., & Stark, A. (2013). Genome‐wide quantitative enhancer activity maps identified by STARR‐seq. Science, 339, 1074–1077. ; Agarwal, V., Inoue, F., Schubach, M., Martin, B. K., Dash, P. M., Zhang, Z., Sohota, A., Noble, W. S., Yardimci, G. G., Kircher, M., Shendure, J., & Ahituv, N. (2023). Massively parallel characterization of transcriptional regulatory elements in three diverse human cell types. BioRxiv. ; De Smet, R., & Marchal, K. (2010). Advantages and limitations of current network inference methods. Nature Reviews Microbiology, 8, 717–729. ; Bar‐Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., Gordon, D. B., Fraenkel, E., Jaakkola, T. S., Young, R. A., & Gifford, D. K. (2003). Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 21, 1337–1342. ; Reiss, D. J., Baliga, N. S., & Bonneau, R. (2006). Integrated biclustering of heterogeneous genome‐wide datasets for the inference of global regulatory networks. BMC Bioinformatics [Electronic Resource], 7, 1–22. ; Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.‐K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., Min, R., Alves, P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, A. P., Cayting, P., Charos, A., Chen, D. Z., & Snyder, M. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100. ; Jothi, R., Balaji, S., Wuster, A., Grochow, J. A., Gsponer, J., Przytycka, T. M., Aravind, L., & Babu, M. M. (2009). Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology, 5, 294. ; Uzun, Y. (2023). Approaches for benchmarking single‐cell gene regulatory network inference methods. arXiv. ; Shen, W.‐K., Chen, S.‐Y., Gan, Z.‐Q., Zhang, Y.‐Z., Yue, T., Chen, M.‐M., Xue, Y., Hu, H., & Guo, A.‐Y. (2023). AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Research, 51, D39–D45. ; Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co‐expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, Article17. ; Liu, Z.‐P. (2017). Quantifying gene regulatory relationships with association measures: A comparative study. Frontiers in Genetics, 8, 96. ; Yin, W., Mendoza, L., Monzon‐Sandoval, J., Urrutia, A. O., & Gutierrez, H. (2021). Emergence of co‐expression in gene regulatory networks. PLoS ONE, 16, e0247671. ; Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006). ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics [Electronic Resource], 7(Suppl 1), S7. ; Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J., & Gardner, T. S. (2007). Large‐scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLOS Biology, 5, e8. ; Meyer, P. E., Kontos, K., Lafitte, F., & Bontempi, G. (2007). Information‐theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007, 79879. ; Butte, A. J., & Kohane, I. S. (2000). Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing, 418–429. ; Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons. ; Statnikov, A., & Aliferis, C. F. (2010). Analysis and computational dissection of molecular signature multiplicity. Plos Computational Biology, 6, e1000790. ; Hill, S. M., Lu, Y., Molina, J., Heiser, L. M., Spellman, P. T., Speed, T. P., Gray, J. W., Mills, G. B., & Mukherjee, S. (2012). Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics, 28, 2804–2810. ; Gao, S., Dai, Y., & Rehman, J. (2021). A Bayesian inference transcription factor activity model for the analysis of single‐cell transcriptomes. Genome research, 31, 1296–1311. ; Haury, A.‐C., Mordelet, F., Vera‐Licona, P., & Vert, J.‐P. (2012). TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Systems Biology, 6, 145. ; Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., & Thorsson, V. (2006). The Inferelator: An algorithm for learning parsimonious regulatory networks from systems‐biology data sets de novo. Genome biology, 7, R36. ; Fuente, A. (2014). Gene network inference: Verification of methods for systems genetics data. Springer Science & Business Media. ; Michailidis, G., & D'alché‐Buc, F. (2013). Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues. Mathematical Biosciences, 246, 326–334. ; Mordelet, F., & Vert, J.‐P. (2008). SIRENE: Supervised inference of regulatory networks. Bioinformatics, 24, i76–i82. ; Cerulo, L., Elkan, C., & Ceccarelli, M. (2010). Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics [Electronic Resource], 11, 228. ; Razaghi‐Moghadam, Z., & Nikoloski, Z. (2020). Supervised learning of gene‐regulatory networks based on graph distance profiles of transcriptomics data. npj Systems Biology and Applications, 6, 21. ; Mignone, P., Pio, G., D'elia, D., & Ceci, M. (2020). Exploiting transfer learning for the reconstruction of the human gene regulatory network. Bioinformatics, 36, 1553–1561. ; Aibar, S., González‐Blas, C. B., Moerman, T., Huynh‐Thu, V. A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.‐C., Geurts, P., Aerts, J., Van Den Oord, J., Atak, Z. K., Wouters, J., & Aerts, S. (2017). SCENIC: Single‐cell regulatory network inference and clustering. Nature Methods, 14, 1083–1086. ; Fiers, M., Minnoye, L., Aibar, S., Bravo González‐Blas, C., Kalender Atak, Z., & Aerts, S. (2018). Mapping gene regulatory networks from single‐cell omics data. Briefings in Functional Genomics, 17, 246–254. ; Saint‐André, V. (2021). Computational biology approaches for mapping transcriptional regulatory networks. Computational and Structural Biotechnology Journal, 19, 4884–4895. ; Stumpf, M. P. H. (2021). Inferring better gene regulation networks from single‐cell data. Current Opinion in Systems Biology., 27, 100342. ; Dai, H., Jin, Q.‐Q., Li, L., & Chen, L.‐N. (2020). Reconstructing gene regulatory networks in single‐cell transcriptomic data analysis. Zoological research, 41, 599–604. ; Badia‐I‐Mompel, P., Wessels, L., Müller‐Dott, S., Trimbour, R., Ramirez Flores, R. O., Argelaguet, R., & Saez‐Rodriguez, J. (2023). Gene regulatory network inference in the era of single‐cell multi‐omics. Nature Reviews Genetics, 24(11), 739–754. ; Nguyen, H., Tran, D., Tran, B., Pehlivan, B., & Nguyen, T. (2021). A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Briefings in Bioinformatics, 22, bbaa190. ; Mercatelli, D., Scalambra, L., Triboli, L., Ray, F., & Giorgi, F. M. (2020). Gene regulatory network inference resources: A practical overview. Biochimica Et Biophysica Acta, Gene Regulatory Mechanisms, 1863, 194430. ; Akers, K., & Murali, T. M. (2021). Gene regulatory network inference in single‐cell biology. Current Opinion in Systems Biology, 26, 87–97. ; Ly, L.‐H., & Vingron, M. (2022). Effect of imputation on gene network reconstruction from single‐cell RNA‐seq data. Patterns (N Y), 3, 100414. ; Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics [Electronic Resource], 9, 559. ; Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E., & Swarup, V. (2023). hdWGCNA identifies co‐expression networks in high‐dimensional transcriptomics data. Cell Reports Methods, 3, 100498. ; Schäfer, J., & Strimmer, K. (2005). An empirical Bayes approach to inferring large‐scale gene association networks. Bioinformatics, 21, 754–764. ; Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104, 735–746. ; Johansson, Å., Løset, M., Mundal, S. B., Johnson, M. P., Freed, K. A., Fenstad, M. H., Moses, E. K., Austgulen, R., & Blangero, J. (2011). Partial correlation network analyses to detect altered gene interactions in human disease: Using preeclampsia as a model. Human Genetics, 129, 25–34. ; Yip, K. Y., Alexander, R. P., Yan, K.‐K., & Gerstein, M. (2010). Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS ONE, 5, e8121. ; Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics (Oxford, England), 9, 432–441. ; Ross, B. C. (2014). Mutual information between discrete and continuous data sets. PLoS ONE, 9, e87357. ; Madhamshettiwar, P. B., Maetschke, S. R., Davis, M. J., Reverter, A., & Ragan, M. A. (2012). Gene regulatory network inference: Evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome medicine, 4, 41. ; Lei, J., Cai, Z., He, X., Zheng, W., & Liu, J. (2023). An approach of gene regulatory network construction using mixed entropy optimizing context‐related likelihood mutual information. Bioinformatics, 39, btac717. ; Huynh‐Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring regulatory networks from expression data using tree‐based methods. PLoS ONE, 5, e12776. ; Huynh‐Thu, V. A., & Sanguinetti, G. (2015). Combining tree‐based and dynamical systems for the inference of gene regulatory networks. Bioinformatics, 31, 1614–1622. ; Alawad, D. M., Katebi, A., Kabir, M. W. U., & Hoque, M. T. (2023). AGRN: Accurate gene regulatory network inference using ensemble machine learning methods. Bioinformatics Advances, 3, vbad032. ; Sahu, B., Hartonen, T., Pihlajamaa, P., Wei, B., Dave, K., Zhu, F., Kaasinen, E., Lidschreiber, K., Lidschreiber, M., Daub, C. O., Cramer, P., Kivioja, T., & Taipale, J. (2022). Sequence determinants of human gene regulatory elements. Nature Genetics, 54, 283–294. ; Dotson, G. A., Chen, C., Lindsly, S., Cicalo, A., Dilworth, S., Ryan, C., Jeyarajan, S., Meixner, W., Stansbury, C., Pickard, J., Beckloff, N., Surana, A., Wicha, M., Muir, L. A., & Rajapakse, I. (2022). Deciphering multi‐way interactions in the human genome. Nature Communications, 13, 5498. ; Li, Z., Gao, E., Zhou, J., Han, W., Xu, X., & Gao, X. (2023). Applications of deep learning in understanding gene regulation. Cell Reports Methods, 3, 100384. ; Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., & Murali, T. M. (2020). Benchmarking algorithms for gene regulatory network inference from single‐cell transcriptomic data. Nature Methods, 17, 147–154. ; Yuan, Y., & Bar‐Joseph, Z. (2019). Deep learning for inferring gene relationships from single‐cell expression data. Proceedings of the National Academy of Sciences, 116, 27151–27158. ; Zhao, M., He, W., Tang, J., Zou, Q., & Guo, F. (2022). A hybrid deep learning framework for gene regulatory network inference from single‐cell transcriptomic data. Briefings in Bioinformatics, 23, bbab568. ; Fan, Y., & Ma, X. (2021). Gene regulatory network inference using 3D convolutional neural network. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 99–106. ; Jansen, C., Ramirez, R. N., El‐Ali, N. C., Gomez‐Cabrero, D., Tegner, J., Merkenschlager, M., Conesa, A., & Mortazavi, A. (2019). Building gene regulatory networks from scATAC‐seq and scRNA‐seq using Linked Self Organizing Maps. Plos Computational Biology, 15, e1006555. ; Bravo González‐Blas, C., De Winter, S., Hulselmans, G., Hecker, N., Matetovici, I., Christiaens, V., Poovathingal, S., Wouters, J., Aibar, S., & Aerts, S. (2023). SCENIC+: Single‐cell multiomic inference of enhancers and gene regulatory networks. Nature Methods, 20, 1355–1367. ; Yang, Y., Li, G., Zhong, Y., Xu, Q., Chen, B.‐J., Lin, Y.‐T., Chapkin, R. S., & Cai, J. J. (2023). Gene knockout inference with variational graph autoencoder learning single‐cell gene regulatory networks. Nucleic Acids Research, 51, 6578–6592. ; Wang, J., Ma, A., Ma, Q., Xu, D., & Joshi, T. (2020). Inductive inference of gene regulatory network using supervised and semi‐supervised graph neural networks. Computational and Structural Biotechnology Journal, 18, 3335–3343. ; Wang, J., Chen, Y., & Zou, Q. (2023). Inferring gene regulatory network from single‐cell transcriptomes with graph autoencoder model. PLos Genet, 19, e1010942. ; Feng, K., Jiang, H., Yin, C., & Sun, H. (2023). Gene regulatory network inference based on causal discovery integrating with graph neural network. Quantitative Biology, 11, 434–450. ; Chen, G., & Liu, Z.‐P. (2022). Graph attention network for link prediction of gene regulations from single‐cell RNA‐sequencing data. Bioinformatics, 38, 4522–4529. ; Shu, H., Zhou, J., Lian, Q., Li, H., Zhao, D., Zeng, J., & Ma, J. (2021). Modeling gene regulatory networks using neural network architectures. Nature Computational Science, 1, 491–501. ; Zhu, H., & Slonim, D. K. (2023). Improving gene regulatory network inference using Dropout Augmentation. BioRxiv. ; Zhang, Y., Wang, M., Wang, Z., Liu, Y., Xiong, S., & Zou, Q. (2023). MetaSEM: Gene regulatory network inference from single‐cell RNA data by meta‐learning. International Journal of Molecular Sciences, 24, 2595. ; Xu, J., Zhang, A., Liu, F., & Zhang, X. (2023). STGRNS: An interpretable transformer‐based method for inferring gene regulatory networks from single‐cell transcriptomic data. Bioinformatics, 39, btad165. ; Zhu, H., & Slonim, D. K. (2023). From noise to knowledge: Probabilistic diffusion‐based neural inference of gene regulatory networks. BioRxiv. ; Chen, S., & Mar, J. C. (2018). Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics [Electronic Resource], 19, 232. ; Kang, Y., Thieffry, D., & Cantini, L. (2021). Evaluating the reproducibility of single‐cell gene regulatory network inference algorithms. Frontiers in Genetics, 12, 617282. ; Gao, P., Chen, C., Howell, E. D., Li, Y., Tober, J., Uzun, Y., He, B., Gao, L., Zhu, Q., Siekmann, A. F., Speck, N. A., & Tan, K. (2020). Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells. Genes & Development, 34, 950–964. ; Jiang, J., Lyu, P., Li, J., Huang, S., Tao, J., Blackshaw, S., Qian, J., & Wang, J. (2022). IReNA: Integrated regulatory network analysis of single‐cell transcriptomes and chromatin accessibility profiles. Iscience, 25(11), 105359. ; Duren, Z., Lu, W. S., Arthur, J. G., Shah, P., Xin, J., Meschi, F., Li, M. L., Nemec, C. M., Yin, Y., & Wong, W. H. (2021). Sc‐compReg enables the comparison of gene regulatory networks between conditions using single‐cell data. Nature Communications, 12, 4763. ; Zhang, L., Zhang, J., & Nie, Q. (2022). DIRECT‐NET: An efficient method to discover cis‐regulatory elements and construct regulatory networks from single‐cell multiomics data. Science advances, 8, eabl7393. ; Lee, J., Hyeon, D. Y., & Hwang, D. (2020). Single‐cell multiomics: Technologies and data analysis methods. Experimental & Molecular Medicine, 52, 1428–1442. ; Ogbeide, S., Giannese, F., Mincarelli, L., & Macaulay, I. C. (2022). Into the multiverse: Advances in single‐cell multiomic profiling. Trends in Genetics, 38, 831–843. ; Wang, L., Trasanidis, N., Wu, T., Dong, G., Hu, M., Bauer, D. E., & Pinello, L. (2023). Dictys: Dynamic gene regulatory network dissects developmental continuum with single‐cell multiomics. Nature Methods, 20, 1368–1378. ; Li, Z., Nagai, J. S., Kuppe, C., Kramann, R., & Costa, I. G. (2023). scMEGA: Single‐cell multi‐omic enhancer‐based gene regulatory network inference. Bioinformatics Advances, 3, vbad003. ; Matharu, N., & Ahituv, N. (2020). Modulating gene regulation to treat genetic disorders. Nat Rev Drug Discovery, 19, 757–775. ; Oz‐Levi, D., Olender, T., Bar‐Joseph, I., Zhu, Y., Marek‐Yagel, D., Barozzi, I., Osterwalder, M., Alkelai, A., Ruzzo, E. K., Han, Y., Vos, E. S. M., Reznik‐Wolf, H., Hartman, C., Shamir, R., Weiss, B., Shapiro, R., Pode‐Shakked, B., Tatarskyy, P., Milgrom, R., & Pennacchio, L. A. (2019). Noncoding deletions reveal a gene that is critical for intestinal function. Nature, 571, 107–111. ; Inoue, F., & Ahituv, N. (2015). Decoding enhancers using massively parallel reporter assays. Genomics, 106, 159–164. ; Klein, J. C., Agarwal, V., Inoue, F., Keith, A., Martin, B., Kircher, M., Ahituv, N., & Shendure, J. (2020). A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 17, 1083–1091. ; Roberts, B. S., Partridge, E. C., Moyers, B. A., Agarwal, V., Newberry, K. M., Martin, B. K., Shendure, J., Myers, R. M., & Cooper, G. M. (2021). Genome‐wide strand asymmetry in massively parallel reporter activity favors genic strands. Genome research, 31, 866–876. ; Andersson, R., & Sandelin, A. (2020). Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 21, 71–87. ; Inoue, F., Kircher, M., Martin, B., Cooper, G. M., Witten, D. M., Mcmanus, M. T., Ahituv, N., & Shendure, J. (2017). A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Research, 27, 38–52. ; Zheng, Y., & VanDusen, N. J. (2023). Massively parallel reporter assays for high‐throughput in vivo analysis of cis‐regulatory elements. Journal of Cardiovascular Development and Disease, 10(4), 144. ; Guo, M. G., Reynolds, D. L., Ang, C. E., Liu, Y., Zhao, Y., Donohue, L. K. H., Siprashvili, Z., Yang, X., Yoo, Y., Mondal, S., Hong, A., Kain, J., Meservey, L., Fabo, T., Elfaki, I., Kellman, L. N., Abell, N. S., Pershad, Y., Bayat, V., & Khavari, P. A. (2023). Integrative analyses highlight functional regulatory variants associated with neuropsychiatric diseases. Nature Genetics, 55, 1876–1891. ; Griesemer, D., Xue, J. R., Reilly, S. K., Ulirsch, J. C., Kukreja, K., Davis, J. R., Kanai, M., Yang, D. K., Butts, J. C., Guney, M. H., Luban, J., Montgomery, S. B., Finucane, H. K., Novina, C. D., Tewhey, R., & Sabeti, P. C. (2021). Genome‐wide functional screen of 3’UTR variants uncovers causal variants for human disease and evolution. Cell, 184, 5247–5260.e19. ; Toropainen, A., Stolze, L. K., Örd, T., Whalen, M. B., Torrell, P. M., Link, V. M., Kaikkonen, M. U., & Romanoski, C. E. (2022). Functional noncoding SNPs in human endothelial cells fine‐map vascular trait associations. Genome Research, 32, 409–424. ; Oh, I. Y., & Chen, S. (2019). High‐throughput analysis of retinal cis‐regulatory networks by massively parallel reporter assays. Advances in Experimental Medicine and Biology, 1185, 359–364. ; Myint, L., Wang, R., Boukas, L., Hansen, K. D., Goff, L. A., & Avramopoulos, D. (2020). A screen of 1,049 schizophrenia and 30 Alzheimer's‐associated variants for regulatory potential. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 183, 61–73. ; Klein, J. C., Keith, A., Rice, S. J., Shepherd, C., Agarwal, V., Loughlin, J., & Shendure, J. (2019). Functional testing of thousands of osteoarthritis‐associated variants for regulatory activity. Nature Communications, 10, 2434. ; Capauto, D., Wang, Y., Wu, F., Norton, S., Mariani, J., Inoue, F., Crawford, G. E., Ahituv, N., Abyzov, A., & Vaccarino, F. M., PsychENCODE Consortium. (2023). Characterization of enhancer activity in early human neurodevelopment using Massively parallel reporter assay (MPRA) and forebrain organoids. BioRxiv. ; Kircher, M., Xiong, C., Martin, B., Schubach, M., Inoue, F., Bell, R. J. A., Costello, J. F., Shendure, J., & Ahituv, N. (2019). Saturation mutagenesis of twenty disease‐associated regulatory elements at single base‐pair resolution. Nature Communications, 10, 3583. ; Catizone, A. N., Uzunbas, G. K., Celadova, P., Kuang, S., Bose, D., & Sammons, M. A. (2020). Locally acting transcription factors regulate p53‐dependent cis‐regulatory element activity. Nucleic Acids Research, 48, 4195–4213. ; Tan, Y., Yan, X., Sun, J., Wan, J., Li, X., Huang, Y., Li, L., Niu, L., & Hou, C. (2023). Genome‐wide enhancer identification by massively parallel reporter assay in Arabidopsis. The Plant Journal, 116, 234–250. ; King, D. M., Hong, C. K. Y., Shepherdson, J. L., Granas, D. M., Maricque, B. B., & Cohen, B. A. (2020). Synthetic and genomic regulatory elements reveal aspects of cis‐regulatory grammar in mouse embryonic stem cells. Elife, 9, e41279. ; Zhao, S., C. K. Y., Myers, C. A., Granas, D. M., White, M. A., Corbo, J. C., & Cohen, B. A. (2023). A single‐cell massively parallel reporter assay detects cell‐type‐specific gene regulation. Nature Genetics, 55, 346–354. ; Muerdter, F., Boryń, Ł. M., & Arnold, C. D. (2015). STARR‐seq—principles and applications. Genomics, 106, 145–150. ; Neumayr, C., Pagani, M., Stark, A., & Arnold, C. D. (2019). D. STARR‐seq and UMI‐STARR‐seq: Assessing enhancer activities for genome‐wide‐, high‐, and low‐complexity candidate libraries. Current Protocols in Molecular Biology, 128, e105. ; Jores, T., Tonnies, J., Dorrity, M. W., Cuperus, J. T., Fields, S., & Queitsch, C. (2020). Identification of plant enhancers and their constituent elements by STARR‐seq in tobacco leaves. Plant Cell, 32, 2120–2131. ; Leung, A. K.‐Y., Yao, L., & Yu, H. (2022). Functional genomic assays to annotate enhancer‐promoter interactions genome wide. Human Molecular Genetics, 31, R97–R104. ; Liu, Y., Yu, S., Dhiman, V. K., Brunetti, T., Eckart, H., & White, K. P. (2017). Functional assessment of human enhancer activities using whole‐genome STARR‐sequencing. Genome biology, 18, 219. ; Nagayasu, K., Andoh, C., Shirakawa, H., & Kaneko, S. (2022). Diff‐ATAC‐STARR‐Seq: A method for genome‐wide functional screening of enhancer activity in vivo. Biological & Pharmaceutical Bulletin, 45, 1590–1595. ; Örd, T., Õunap, K., Stolze, L. K., Aherrahrou, R., Nurminen, V., Toropainen, A., Selvarajan, I., Lönnberg, T., Aavik, E., Ylä‐Herttuala, S., Civelek, M., Romanoski, C. E., & Kaikkonen, M. U. (2021). Single‐cell epigenomics and functional fine‐mapping of atherosclerosis GWAS loci. Circulation Research, 129, 240–258. ; Xu, J., Song, F., Lyu, H., Kobayashi, M., Zhang, B., Zhao, Z., Hou, Y., Wang, X., Luan, Y., Jia, B., Stasiak, L., Wong, J. H.‐Y., Wang, Q., Jin, Q., Jin, Q., Fu, Y., Yang, H., Hardison, R. C., Dovat, S., & Yue, F. (2022). Subtype‐specific 3D genome alteration in acute myeloid leukaemia. Nature, 611, 387–398. ; Dietlein, F., Wang, A. B., Fagre, C., Tang, A., Besselink, N. J. M., Cuppen, E., Li, C., Sunyaev, S. R., Neal, J. T., & Van Allen, E. M. (2022). Genome‐wide analysis of somatic noncoding mutation patterns in cancer. Science, 376, eabg5601. ; Huang, H., Hu, J., Maryam, A., Huang, Q., Zhang, Y., Ramakrishnan, S., Li, J., Ma, H., Ma, V. W. S., Cheuk, W., So, G. Y. K., Wang, W., Cho, W. C. S., Zhang, L., Chan, K. M., Wang, X., & Chin, Y. R. (2021). Defining super‐enhancer landscape in triple‐negative breast cancer by multiomic profiling. Nature Communications, 12, 2242. ; Zhao, X., Qian, M., Goodings, C., Zhang, Y., Yang, W., Wang, P., Xu, B., Tian, C., Pui, C.‐H., Hunger, S. P., Raetz, E. A., Devidas, M., Relling, M. V., Loh, M. L., Savic, D., Li, C., & Yang, J. J. (2022). Molecular mechanisms of ARID5B‐mediated genetic susceptibility to acute lymphoblastic leukemia. JNCI: Journal of the National Cancer Institute, 114, 1287–1295. ; Kampmann, M. (2020). CRISPR‐based functional genomics for neurological disease. Nature Reviews Neurology, 16, 465–480. ; Lim, C. K. W., Mccallister, T. X., Saporito‐Magriña, C., Mcpheron, G. D., Krishnan, R., Zeballos C, M. A., Powell, J. E., Clark, L. V., Perez‐Pinera, P., & Gaj, T. (2022). CRISPR base editing of cis‐regulatory elements enables the perturbation of neurodegeneration‐linked genes. Molecular Therapy, 30, 3619–3631. ; Schneider, W. M., Luna, J. M., Hoffmann, H.‐H., Sánchez‐Rivera, F. J., Leal, A. A., Ashbrook, A. W., Le Pen, J., Ricardo‐Lax, I., Michailidis, E., Peace, A., Stenzel, A. F., Lowe, S. W., Macdonald, M. R., Rice, C. M., & Poirier, J. T. (2021). Genome‐scale identification of SARS‐CoV‐2 and pan‐coronavirus host factor networks. Cell, 184, 120–132.e14. ; Chen, Z., Arai, E., Khan, O., Zhang, Z., Ngiow, S. F., He, Y., Huang, H., Manne, S., Cao, Z., Baxter, A. E., Cai, Z., Freilich, E., Ali, M. A., Giles, J. R., Wu, J. E., Greenplate, A. R., Hakeem, M. A., Chen, Q., Kurachi, M., & Shi, J. (2021). In vivo CD8 T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 184, 1262–1280.e22. ; Li, Y., Yang, C., Liu, Z., Du, S., Can, S., Zhang, H., Zhang, L., Huang, X., Xiao, Z., Li, X., Fang, J., Qin, W., Sun, C., Wang, C., Chen, J., & Chen, H. (2022). Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy. Molecular Cancer, 21, 2. ; Gasperini, M., Hill, A. J., Mcfaline‐Figueroa, J. L., Martin, B., Kim, S., Zhang, M. D., Jackson, D., Leith, A., Schreiber, J., Noble, W. S., Trapnell, C., Ahituv, N., & Shendure, J. (2019). A genome‐wide framework for mapping gene regulation via cellular genetic screens. Cell, 176, 377–390.e19. ; Datlinger, P., Rendeiro, A. F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., Schuster, L. C., Kuchler, A., Alpar, D., & Bock, C. (2017). Pooled CRISPR screening with single‐cell transcriptome readout. Nature Methods, 14, 297–301. ; Schraivogel, D., Gschwind, A. R., Milbank, J. H., Leonce, D. R., Jakob, P., Mathur, L., Korbel, J. O., Merten, C. A., Velten, L., & Steinmetz, L. M. (2020). Targeted Perturb‐seq enables genome‐scale genetic screens in single cells. Nature Methods, 17, 629–635. ; Gasperini, M., Tome, J. M., & Shendure, J. (2020). Towards a comprehensive catalogue of validated and target‐linked human enhancers. Nature Reviews Genetics, 21, 292–310. ; Xie, S., Duan, J., Li, B., Zhou, P., & Hon, G. C. (2017). Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Molecular Cell, 66, 285–299.e5. ; Fulco, C. P., Nasser, J., Jones, T. R., Munson, G., Bergman, D. T., Subramanian, V., Grossman, S. R., Anyoha, R., Doughty, B. R., Patwardhan, T. A., Nguyen, T. H., Kane, M., Perez, E. M., Durand, N. C., Lareau, C. A., Stamenova, E. K., Aiden, E. L., Lander, E. S., & Engreitz, J. M. (2019). Activity‐by‐contact model of enhancer‐promoter regulation from thousands of CRISPR perturbations. Nature Genetics, 51, 1664–1669. ; Saito, Y., Yin, D., Kubota, N., Wang, X., Filliol, A., Remotti, H., Nair, A., Fazlollahi, L., Hoshida, Y., Tabas, I., Wangensteen, K. J., & Schwabe, R. F. (2023). A Therapeutically targetable TAZ‐TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23. Gastroenterology, 164, 1279–1292. ; Morgens, D. W., Gulyas, L., Souza, A. S., & Glaunsinger, B. A. (2023). Coding and non‐coding elements comprise a regulatory network controlling transcription in Kaposi's sarcoma‐associated herpesvirus. BioRxiv. ; Wang, T.‐M., Xiao, R.‐W., He, Y.‐Q., Zhang, W.‐L., Diao, H., Tang, M., Mai, Z.‐M., Xue, W.‐Q., Yang, D.‐W., Deng, C.‐M., Liao, Y., Zhou, T., Li, D.‐H., Wu, Y.‐X., Chen, X.‐Y., Zhang, J., Li, X.‐Z., Zhang, P.‐F., Zheng, X.‐H., & Jia, W.‐H. (2023). High‐throughput identification of regulatory elements and functional assays to uncover susceptibility genes for nasopharyngeal carcinoma. American Journal of Human Genetics, 110, 1162–1176. ; Bril, O., Schwarzmueller, L. J., Moreno, L. F., Vermeulen, L., & Léveillé, N. (2023). Identifying essential long non‐coding RNAs in cancer using CRISPRi‐based dropout screens. Structured Transparent Accessible Reproducible Protocols, 4, 102588. ; Ng, M., Verboon, L., Issa, H., Bhayadia, R., Vermunt, M. W., Winkler, R., Schüler, L., Alejo, O., Schuschel, K., Regenyi, E., Borchert, D., Heuser, M., Reinhardt, D., Yaspo, M. L., Heckl, D., & Klusmann, J. H. (2023). Myeloid leukemia vulnerabilities embedded in long noncoding RNA locus. Iscience, 26, 107844. ; Rogers, B. B., Anderson, A. G., Lauzon, S. N., Davis, M. N., Hauser, R. M., Roberts, S. C., Rodriguez‐Nunez, I., Trausch‐Lowther, K., Barinaga, E. A., Taylor, J. W., Mackiewicz, M., Roberts, B. S., Cooper, S. J., Rizzardi, L. F., Myers, R. M., & Cochran, J. N. (2023). MAPT expression is mediated by long‐range interactions with cis‐regulatory elements. BioRxiv. ; Yang, X., Wen, J., Yang, H., Jones, I. R., Zhu, X., Liu, W., Li, B., Clelland, C. D., Luo, W., Wong, M. Y., Ren, X., Cui, X., Song, M., Liu, H., Chen, C., Eng, N., Ravichandran, M., Sun, Y., Lee, D., & Shen, Y. (2023). Functional characterization of Alzheimer's disease genetic variants in microglia. Nature Genetics, 55, 1735–1744. ; Hou, G., Zhou, T., Xu, N., Yin, Z., Zhu, X., Zhang, Y., Cui, Y., Ma, J., Tang, Y., Cheng, Z., Shen, Y., Chen, Y., Zou, L.‐H., Wang, Y.‐F., Yin, Z., Guo, Y., Ding, H., Ye, Z., & Shen, N. (2023). Integrative functional genomics identifies systemic lupus erythematosus causal genetic variant in the IRF5 risk locus. Arthritis & Rheumatology, 75, 574–585. ; Koh, K. D., Bonser, L. R., Eckalbar, W. L., Yizhar‐Barnea, O., Shen, J., Zeng, X., Hargett, K. L., Sun, D. I., Zlock, L. T., Finkbeiner, W. E., Ahituv, N., & Erle, D. J. (2023). Genomic characterization and therapeutic utilization of IL‐13‐responsive sequences in asthma. Cell Genomics, 3, 100229. ; Chardon, F. M., McDiarmid, T. A., Page, N. F., Martin, B., Domcke, S., Regalado, S. G., Lalanne, J. Æt., Calderon, D., Starita, L. M., Sanders, S. J., Ahituv, N., & Shendure, J. (2023). Multiplex, single‐cell CRISPRa screening for cell type specific regulatory elements. BioRxiv. ; Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann, M., & Weissman, J. S. (2014). Genome‐scale CRISPR‐mediated control of gene repression and activation. Cell, 159, 647–661. ; Tian, R., Abarientos, A., Hong, J., Hashemi, S. H., Yan, R., Dräger, N., Leng, K., Nalls, M. A., Singleton, A. B., Xu, K., Faghri, F., & Kampmann, M. (2021). Genome‐wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nature Neuroscience, 24, 1020–1034. ; Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., Nureki, O., & Zhang, F. (2015). Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex. Nature, 517, 583–588. ; Schmidt, R., Steinhart, Z., Layeghi, M., Freimer, J. W., Bueno, R., Nguyen, V. Q., Blaeschke, F., Ye, C. J., & Marson, A. (2022). CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science, 375, eabj4008. ; Simeonov, D. R., Gowen, B. G., Boontanrart, M., Roth, T. L., Gagnon, J. D., Mumbach, M. R., Satpathy, A. T., Lee, Y., Bray, N. L., Chan, A. Y., Lituiev, D. S., Nguyen, M. L., Gate, R. E., Subramaniam, M., Li, Z., Woo, J. M., Mitros, T., Ray, G. J., Curie, G. L., & Marson, A. (2017). Discovery of stimulation‐responsive immune enhancers with CRISPR activation. Nature, 549, 111–115. ; Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., Hardin, A., Eckalbar, W. L., Vaisse, C., & Ahituv, N. (2019). CRISPR‐mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, 363, eaau0629. ; Dai, Z., Li, R., Hou, Y., Li, Q., Zhao, K., Li, T., Li, M. J., & Wu, X. (2021). Inducible CRISPRa screen identifies putative enhancers. Journal of Genetics and Genomics, 48, 917–927. ; Joung, J., Engreitz, J. M., Konermann, S., Abudayyeh, O. O., Verdine, V. K., Aguet, F., Gootenberg, J. S., Sanjana, N. E., Wright, J. B., Fulco, C. P., Tseng, Y.‐Y., Yoon, C. H., Boehm, J. S., Lander, E. S., & Zhang, F. (2017). Genome‐scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 548, 343–346. ; Sala, C., & Verpelli, C. (2016). Neuronal and synaptic dysfunction in autism spectrum disorder and intellectual disability. Academic Press. ; Klann, T. S., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2018). Screening regulatory element function with CRISPR/Cas9‐based epigenome editing. Methods in Molecular Biology, 1767, 447–480. ; Thakore, P. I., D'ippolito, A. M., Song, L., Safi, A., Shivakumar, N. K., Kabadi, A. M., Reddy, T. E., Crawford, G. E., & Gersbach, C. A. (2015). Highly specific epigenome editing by CRISPR‐Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 12, 1143–1149. ; Klann, T. S., Black, J. B., Chellappan, M., Safi, A., Song, L., Hilton, I. B., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2017). CRISPR‐Cas9 epigenome editing enables high‐throughput screening for functional regulatory elements in the human genome. Nature Biotechnology, 35, 561–568. ; Kabadi, A. M., Machlin, L., Dalal, N., Lee, R. E., Mcdowell, I., Shah, N. N., Drowley, L., Randell, S. H., & Reddy, T. E. (2022). Epigenome editing of the CFTR‐locus for treatment of cystic fibrosis. Journal of Cystic Fibrosis, 21, 164–171. ; Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA‐ and RNA‐binding proteins by deep learning. Nature Biotechnology, 33, 831–838. ; Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning‐based sequence model. Nature Methods, 12, 931–934. ; Quang, D., & Xie, X. (2016). DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research, 44, e107. ; Zhang, Q., Wang, S., Chen, Z., He, Y., Liu, Q., & Huang, D. S. (2021). Locating transcription factor binding sites by fully convolutional neural network. Briefings in Bioinformatics, 22, bbaa435. ; Kelley, D. R., Snoek, J., & Rinn, J. L. (2016). Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Research, 26, 990–999. ; Shrikumar, A., Tian, K., Avsec, Z., Shcherbina, A., Banerjee, A., Sharmin, M., Nair, S., & Kundaje, A. (2018). Technical note on transcription factor motif discovery from importance scores (TF‐MoDISco) version 0.5.6.5. arXiv. ; Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 3145–3153). PMLR, 06–11 Aug. ; Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., Mcanany, C., Gagneur, J., Kundaje, A., & Zeitlinger, J. (2021). Base‐resolution models of transcription‐factor binding reveal soft motif syntax. Nature Genetics, 53, 354–366. ; Zheng, A., Lamkin, M., Zhao, H., Wu, C., Su, H., & Gymrek, M. (2021). Deep neural networks identify sequence context features predictive of transcription factor binding. Nature Machine Intelligence, 3, 172–180. ; Chen, C., Hou, J., Shi, X., Yang, H., Birchler, J. A., & Cheng, J. (2021). DeepGRN: Prediction of transcription factor binding site across cell‐types using attention‐based deep neural networks. BMC Bioinformatics [Electronic Resource], 22, 38. ; Ding, P., Wang, Y., Zhang, X., Gao, X., Liu, G., & Yu, B. (2023). DeepSTF: Predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape. Briefings in Bioinformatics, 24, bbad231. ; Cazares, T. A., Rizvi, F. W., Iyer, B., Chen, X., Kotliar, M., Bejjani, A. T., Wayman, J. A., Donmez, O., Wronowski, B., Parameswaran, S., Kottyan, L. C., Barski, A., Weirauch, M. T., Prasath, V. B. S., & Miraldi, E. R. (2023). maxATAC: Genome‐scale transcription‐factor binding prediction from ATAC‐seq with deep neural networks. Plos Computational Biology, 19, e1010863. ; Liu, B., Yang, F., Huang, D.‐S., & Chou, K.‐C. (2018). iPromoter‐2L: A two‐layer predictor for identifying promoters and their types by multi‐window‐based PseKNC. Bioinformatics, 34, 33–40. ; Oubounyt, M., Louadi, Z., Tayara, H., & Chong, K. T. (2019). DeePromoter: Robust promoter predictor using deep learning. Frontiers in Genetics, 10, 286. ; Zhao, M., Yuan, Z., Wu, L., Zhou, S., & Deng, Y. (2022). Precise prediction of promoter strength based on a de novo synthetic promoter library coupled with machine learning. ACS Synthetic Biology, 11, 92–102. ; Li, H., Shi, L., Gao, W., Zhang, Z., Zhang, L., Zhao, Y., & Wang, G. (2022). dPromoter‐XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods (San Diego, Calif.), 204, 215–222. ; Agarwal, V., & Shendure, J. (2020). Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell reports, 31, 107663. ; Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., & Troyanskaya, O. G. (2018). Deep learning sequence‐based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 50, 1171–1179. ; Gao, S., Rehman, J., & Dai, Y. (2022). Assessing comparative importance of DNA sequence and epigenetic modifications on gene expression using a deep convolutional neural network. Computational and Structural Biotechnology Journal, 20, 3814–3823. ; Chen, S., Gan, M., Lv, H., & Jiang, R. (2021). DeepCAPE: A deep convolutional neural network for the accurate prediction of enhancers. Genomics, Proteomics & Bioinformatics, 19, 565–577. ; Kaur, A., Chauhan, A. P. S., & Aggarwal, A. K. (2023). Prediction of enhancers in DNA sequence data using a hybrid CNN‐DLSTM model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20, 1327–1336. ; Min, X., Zeng, W., Chen, S., Chen, N., Chen, T., & Jiang, R. (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics [Electronic Resource], 18, 478. ; Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska‐Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli, P., & Kelley, D. R. (2021). Effective gene expression prediction from sequence by integrating long‐range interactions. Nature Methods, 18, 1196–1203. ; Kelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., Mclean, C. Y., & Snoek, J. (2018). Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Research, 28, 739–750. ; Singh, S., Yang, Y., Póczos, B., & Ma, J. (2019). Predicting enhancer‐promoter interaction from genomic sequence with deep neural networks. Quantitative Biology, 7, 122–137. ; Whalen, S., Inoue, F., Ryu, H., Fair, T., Markenscoff‐Papadimitriou, E., Keough, K., Kircher, M., Martin, B., Alvarado, B., Elor, O., Laboy Cintron, D., Williams, A., Hassan Samee, M. A., Thomas, S., Krencik, R., Ullian, E. M., Kriegstein, A., Rubenstein, J. L., Shendure, J., & Pollard, K. S. (2023). Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron, 111, 857–873.e8. ; Karollus, A., Mauermeier, T., & Gagneur, J. (2023). Current sequence‐based models capture gene expression determinants in promoters but mostly ignore distal enhancers. Genome biology, 24, 56. ; Penzar, D., Nogina, D., Noskova, E., Zinkevich, A., Meshcheryakov, G., Lando, A., Rafi, A. M., De Boer, C., & Kulakovskiy, I. V. (2023). LegNet: A best‐in‐class deep learning model for short DNA regulatory regions. Bioinformatics, 39, btad457. ; Kulkarni, M. M., & Arnosti, D. N. (2003). Information display by transcriptional enhancers. Development (Cambridge, England), 130, 6569–6575. ; Panne, D. (2008). The enhanceosome. Current Opinion in Structural Biology, 18, 236–242. ; Georgakopoulos‐Soares, I., Deng, C., Agarwal, V., Chan, C. S. Y., Zhao, J., Inoue, F., & Ahituv, N. (2023). Transcription factor binding site orientation and order are major drivers of gene regulatory activity. Nature Communications, 14, 2333. ; De Almeida, B. P., Reiter, F., Pagani, M., & Stark, A. (2022). DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nature Genetics, 54, 613–624. ; Zrimec, J., Fu, X., Muhammad, A. S., Skrekas, C., Jauniskis, V., Speicher, N. K., Börlin, C. S., Verendel, V., Chehreghani, M. H., Dubhashi, D., Siewers, V., David, F., Nielsen, J., & Zelezniak, A. (2022). Controlling gene expression with deep generative design of regulatory DNA. Nature Communications, 13, 5099. ; Vaishnav, E. D., De Boer, C. G., Molinet, J., Yassour, M., Fan, L., Adiconis, X., Thompson, D. A., Levin, J. Z., Cubillos, F. A., & Regev, A. (2022). The evolution, evolvability and engineering of gene regulatory DNA. Nature, 603, 455–463. ; Chen, L., & Capra, J. A. (2020). Learning and interpreting the gene regulatory grammar in a deep learning framework. PLOS Computational Biology, 16, e1008334. ; Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W., & Mostafavi, S. (2022). Obtaining genetics insights from deep learning via explainable artificial intelligence. Nature Reviews Genetics, 24, 125–137.
  • Grant Information: R35 GM150616 United States GM NIGMS NIH HHS; Penn State College of Medicine; Four Diamonds Pediatric Cancer Research Center; R35GM150616 National Institute of General Medical Sciences of the National Institutes of Health
  • Contributed Indexing: Keywords: CRISPR‐Cas9; Cis‐regulation; disease‐associated variants; functional analysis; machine learning; parallel assays; transcription factors
  • Substance Nomenclature: 0 (Transcription Factors)
  • Entry Date(s): Date Created: 20240508 Date Completed: 20240626 Latest Revision: 20240626
  • Update Code: 20240627

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -