Zum Hauptinhalt springen

Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver.

Liepinsh, E ; Zvejniece, L ; et al.
In: British journal of pharmacology, 2024-04-19
academicJournal

Titel:
Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver.
Autor/in / Beteiligte Person: Liepinsh, E ; Zvejniece, L ; Clemensson, L ; Ozola, M ; Vavers, E ; Cirule, H ; Korzh, S ; Skuja, S ; Groma, V ; Briviba, M ; Grinberga, S ; Liu, W ; Olszewski, P ; Gentreau, M ; Fredriksson, R ; Dambrova, M ; Schiöth, HB
Zeitschrift: British journal of pharmacology, 2024-04-19
Veröffentlichung: Ahead of Print, 2024
Medientyp: academicJournal
ISSN: 1476-5381 (electronic)
DOI: 10.1111/bph.16363
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Br J Pharmacol] 2024 Apr 19. <i>Date of Electronic Publication: </i>2024 Apr 19.
  • References: Ahmad, T., Kelly, J. P., McGarrah, R. W., Hellkamp, A. S., Fiuzat, M., Testani, J. M., Wang, T. S., Verma, A., Samsky, M. D., Donahue, M. P., Ilkayeva, O. R., Bowles, D. E., Patel, C. B., Milano, C. A., Rogers, J. G., Felker, G. M., O'Connor, C. M., Shah, S. H., & Kraus, W. E. (2016). Prognostic implications of long‐chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. Journal of the American College of Cardiology, 67(3), 291–299. https://doi.org/10.1016/j.jacc.2015.10.079. ; Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., … Wong, S. S. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 178(Suppl 1), S313–S411. https://doi.org/10.1111/bph.15542. ; Alexander, S. P., Kelly, E., Marrion, N. V., Peters, J. A., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., & Davies, J. A. (2017). The Concise Guide to PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 174, S1–S16. https://doi.org/10.1111/bph.13882. ; Begriche, K., Massart, J., Robin, M. A., Borgne‐Sanchez, A., & Fromenty, B. (2011). Drug‐induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. Journal of Hepatology, 54(4), 773–794. https://doi.org/10.1016/j.jhep.2010.11.006. ; Besse‐Patin, A., Jeromson, S., Levesque‐Damphousse, P., Secco, B., Laplante, M., & Estall, J. L. (2019). PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4285–4290. https://doi.org/10.1073/pnas.1815150116. ; Bhuiyan, J., & Seccombe, D. W. (1996). The effects of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase inhibition on tissue levels of carnitine and carnitine acyltransferase activity in the rabbit. Lipids, 31(8), 867–870. https://doi.org/10.1007/BF02522982. ; Chambers, K. T., Chen, Z., Lai, L., Leone, T. C., Towle, H. C., Kralli, A., Crawford, P. A., & Finck, B. N. (2013). PGC‐1β and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration‐dependent manner. Molecular Metabolism, 2(3), 194–204. https://doi.org/10.1016/j.molmet.2013.05.001. ; Chegary, M., Te Brinke, H., Doolaard, M., Ijlst, L., Wijburg, F. A., Wanders, R. J., & Houten, S. M. (2008). Characterization of l‐aminocarnitine, an inhibitor of fatty acid oxidation. Molecular Genetics and Metabolism, 93(4), 403–410. https://doi.org/10.1016/j.ymgme.2007.11.001. ; Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560. ; Christiansen, L. B., Dohlmann, T. L., Ludvigsen, T. P., Parfieniuk, E., Ciborowski, M., Szczerbinski, L., Kretowski, A., Desler, C., Tiano, L., Orlando, P., Martinussen, T., Olsen, L. H., & Larsen, S. (2021). Atorvastatin impairs liver mitochondrial function in obese Gottingen Minipigs but heart and skeletal muscle are not affected. Scientific Reports, 11(1), 2167. https://doi.org/10.1038/s41598-021-81846-9. ; Colantonio, L. D., Rosenson, R. S., Deng, L., Monda, K. L., Dai, Y., Farkouh, M. E., Safford, M. M., Philip, K., Mues, K. E., & Muntner, P. (2019). Adherence to statin therapy among US adults between 2007 and 2014. Journal of the American Heart Association, 8(1), e010376. https://doi.org/10.1161/JAHA.118.010376. ; Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179, 3907–3913. https://doi.org/10.1111/bph.15868. ; Dambrova, M., Makrecka‐Kuka, M., Kuka, J., Vilskersts, R., Nordberg, D., Attwood, M. M., Smesny, S., Sen, Z. D., Guo, A. C., Oler, E., Tian, S., Zheng, J., Wishart, D. S., Liepinsh, E., & Schiöth, H. B. (2022). Acylcarnitines: Nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacological Reviews, 74(3), 506–551. https://doi.org/10.1124/pharmrev.121.000408. ; de Giorgi, M., Jarrett, K. E., Burton, J. C., Doerfler, A. M., Hurley, A., Li, A., Hsu, R. H., Furgurson, M., Patel, K. R., Han, J., Borchers, C. H., & Lagor, W. R. (2020). Depletion of essential isoprenoids and ER stress induction following acute liver‐specific deletion of HMG‐CoA reductase. Journal of Lipid Research, 61(12), 1675–1686. https://doi.org/10.1194/jlr.RA120001006. ; Deichmann, R. E., Lavie, C. J., Asher, T., DiNicolantonio, J. J., O'Keefe, J. H., & Thompson, P. D. (2015). The interaction between statins and exercise: Mechanisms and strategies to counter the musculoskeletal side effects of this combination therapy. The Ochsner Journal, 15(4), 429–437. ; Di Cara, F., Savary, S., Kovacs, W. J., Kim, P., & Rachubinski, R. A. (2023). The peroxisome: An up‐and‐coming organelle in immunometabolism. Trends in Cell Biology, 33(1), 70–86. https://doi.org/10.1016/j.tcb.2022.06.001. ; Di Pasqua, L. G., Cagna, M., Berardo, C., Vairetti, M., & Ferrigno, A. (2022). Detailed molecular mechanisms involved in drug‐induced non‐alcoholic fatty liver disease and non‐alcoholic steatohepatitis: An update. Biomedicine, 10, 194. https://doi.org/10.3390/biomedicines10010194. ; Germain, K., & Kim, P. K. (2020). Pexophagy: A model for selective autophagy. International Journal of Molecular Sciences, 21, 578. https://doi.org/10.3390/ijms21020578. ; Gillingham, M. B., Weleber, R. G., Neuringer, M., Connor, W. E., Mills, M., van Calcar, S., ver Hoeve, J., Wolff, J., & Harding, C. O. (2005). Effect of optimal dietary therapy upon visual function in children with long‐chain 3‐hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Molecular Genetics and Metabolism, 86(1–2), 124–133. https://doi.org/10.1016/j.ymgme.2005.06.001. ; Goldstein, J. L., & Brown, M. S. (2015). A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 161(1), 161–172. https://doi.org/10.1016/j.cell.2015.01.036. ; Herzog, K., van Lenthe, H., Wanders, R. J. A., Vaz, F. M., Waterham, H. R., & Ferdinandusse, S. (2017). Identification and diagnostic value of phytanoyl‐ and pristanoyl‐carnitine in plasma from patients with peroxisomal disorders. Molecular Genetics and Metabolism, 121(3), 279–282. https://doi.org/10.1016/j.ymgme.2017.05.003. ; Houten, S. M., Wanders, R. J. A., & Ranea‐Robles, P. (2020). Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1866(5), 165720. https://doi.org/10.1016/j.bbadis.2020.165720. ; Kim, J., & Bai, H. (2022). Peroxisomal stress response and inter‐organelle communication in cellular homeostasis and aging. Antioxidants (Basel), 11, 192. https://doi.org/10.3390/antiox11020192. ; Knottnerus, S. J. G., Bleeker, J. C., Wüst, R. C. I., Ferdinandusse, S., IJlst, L., Wijburg, F. A., Wanders, R. J. A., Visser, G., & Houtkooper, R. H. (2018). Disorders of mitochondrial long‐chain fatty acid oxidation and the carnitine shuttle. Reviews in Endocrine & Metabolic Disorders, 19(1), 93–106. https://doi.org/10.1007/s11154-018-9448-1. ; Kovacs, W. J., Charles, K. N., Walter, K. M., Shackelford, J. E., Wikander, T. M., Richards, M. J., Fliesler, S. J., Krisans, S. K., & Faust, P. L. (2012). Peroxisome deficiency‐induced ER stress and SREBP‐2 pathway activation in the liver of newborn PEX2 knock‐out mice. Biochimica et Biophysica Acta, 1821(6), 895–907. https://doi.org/10.1016/j.bbalip.2012.02.011. ; Lacher, S. M., Bruttger, J., Kalt, B., Berthelet, J., Rajalingam, K., Wortge, S., & Waisman, A. (2017). HMG‐CoA reductase promotes protein prenylation and therefore is indispensible for T‐cell survival. Cell Death & Disease, 8(5), e2824. https://doi.org/10.1038/cddis.2017.221. ; Lenartowicz, E., & Wojtczak, A. B. (1988). Significance of the alanine aminotransferase reaction in the formation of α‐ketoglutarate in rat liver mitochondria. Archives of Biochemistry and Biophysics, 260(1), 309–319. https://doi.org/10.1016/0003-9861(88)90455-9. ; Liao, Y., Smyth, G. K., & Shi, W. (2019). The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47(8), e47. https://doi.org/10.1093/nar/gkz114. ; Liepinsh, E., Makrecka‐Kuka, M., Makarova, E., Volska, K., Vilks, K., Sevostjanovs, E., Antone, U., Kuka, J., Vilskersts, R., Lola, D., Loza, E., Grinberga, S., & Dambrova, M. (2017). Acute and long‐term administration of palmitoylcarnitine induces muscle‐specific insulin resistance in mice. BioFactors, 43(5), 718–730. https://doi.org/10.1002/biof.1378. ; Liepinsh, E., Makrecka‐Kuka, M., Volska, K., Kuka, J., Makarova, E., Antone, U., Sevostjanovs, E., Vilskersts, R., Strods, A., Tars, K., & Dambrova, M. (2016). Long‐chain acylcarnitines determine ischaemia/reperfusion‐induced damage in heart mitochondria. The Biochemical Journal, 473, 1191–1202. https://doi.org/10.1042/BCJ20160164. ; Liepinsh, E., Skapare, E., Kuka, J., Makrecka, M., Cirule, H., Vavers, E., Sevostjanovs, E., Grinberga, S., Pugovics, O., & Dambrova, M. (2013). Activated peroxisomal fatty acid metabolism improves cardiac recovery in ischemia‐reperfusion. Naunyn‐Schmiedeberg's Archives of Pharmacology, 386(6), 541–550. https://doi.org/10.1007/s00210-013-0849-0. ; Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611–3616. https://doi.org/10.1111/bph.15178. ; Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8. ; McCoin, C. S., Knotts, T. A., & Adams, S. H. (2015). Acylcarnitines—Old actors auditioning for new roles in metabolic physiology. Nature Reviews. Endocrinology, 11(10), 617–625. https://doi.org/10.1038/nrendo.2015.129. ; McCormick, B. J., & Chirila, R. M. (2021). Carnitine palmitoyltransferase‐II deficiency: Case presentation and review of the literature. Romanian Journal of Internal Medicine, 59(4), 420–424. https://doi.org/10.2478/rjim-2021-0021. ; McNally, B. D., Ashley, D. F., Hänschke, L., Daou, H. N., Watt, N. T., Murfitt, S. A., MacCannell, A. D. V., Whitehead, A., Bowen, T. S., Sanders, F. W. B., Vacca, M., Witte, K. K., Davies, G. R., Bauer, R., Griffin, J. L., & Roberts, L. D. (2022). Long‐chain ceramides are cell non‐autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nature Communications, 13(1), 1748. https://doi.org/10.1038/s41467-022-29363-9. ; Merritt, J. L. 2nd, Norris, M., & Kanungo, S. (2018). Fatty acid oxidation disorders. Annals of Translational Medicine, 6(24), 473. https://doi.org/10.21037/atm.2018.10.57. ; Mollazadeh, H., Tavana, E., Fanni, G., Bo, S., Banach, M., Pirro, M., von Haehling, S., Jamialahmadi, T., & Sahebkar, A. (2021). Effects of statins on mitochondrial pathways. Journal of Cachexia, Sarcopenia and Muscle, 12(2), 237–251. https://doi.org/10.1002/jcsm.12654. ; Nagashima, S., Yagyu, H., Ohashi, K., Tazoe, F., Takahashi, M., Ohshiro, T., Bayasgalan, T., Okada, K., Sekiya, M., Osuga, J. I., & Ishibashi, S. (2012). Liver‐specific deletion of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase causes hepatic steatosis and death. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 1824–1831. https://doi.org/10.1161/ATVBAHA.111.240754. ; Newman, C. B., Preiss, D., Tobert, J. A., Jacobson, T. A., Page, R. L. 2nd, Goldstein, L. B., Chin, C., Tannock, L. R., Miller, M., Raghuveer, G., Duell, P. B., Brinton, E. A., Pollak, A., Braun, L. T., Welty, F. K., & The American Heart Association Clinical Lipidology, Lipoprotein, Metabolism and Thrombosis Committee, a Joint Committee of the Council on Atherosclerosis, Thrombosis and Vascular Biology and Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; and Stroke Council. (2019). Statin safety and associated adverse events: A scientific statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(2), e38–e81. https://doi.org/10.1161/ATV.0000000000000073. ; North, K. N., Hoppel, C. L., De Girolami, U., Kozakewich, H. P., & Korson, M. S. (1995). Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. The Journal of Pediatrics, 127(3), 414–420. https://doi.org/10.1016/s0022-3476(95)70073-0. ; Okumoto, K., Tamura, S., Honsho, M., & Fujiki, Y. (2020). Peroxisome: Metabolic functions and biogenesis. Advances in Experimental Medicine and Biology, 1299, 3–17. https://doi.org/10.1007/978-3-030-60204-8_1. ; Okun, J. G., Kölker, S., Schulze, A., Kohlmüller, D., Olgemöller, K., Lindner, M., Hoffmann, G. F., Wanders, R. J. A., & Mayatepek, E. (2002). A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: Diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochimica et Biophysica Acta, 1584(2–3), 91–98. https://doi.org/10.1016/s1388-1981(02)00296-2. ; Osaki, Y., Nakagawa, Y., Miyahara, S., Iwasaki, H., Ishii, A., Matsuzaka, T., Kobayashi, K., Yatoh, S., Takahashi, A., Yahagi, N., Suzuki, H., Sone, H., Ohashi, K., Ishibashi, S., Yamada, N., & Shimano, H. (2015). Skeletal muscle‐specific HMG‐CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin‐induced myopathy. Biochemical and Biophysical Research Communications, 466(3), 536–540. https://doi.org/10.1016/j.bbrc.2015.09.065. ; Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382. ; Parker, B. A., Augeri, A. L., Capizzi, J. A., Ballard, K. D., Troyanos, C., Baggish, A. L., D'Hemecourt, P. A., & Thompson, P. D. (2012). Effect of statins on creatine kinase levels before and after a marathon run. The American Journal of Cardiology, 109(2), 282–287. https://doi.org/10.1016/j.amjcard.2011.08.045. ; Penson, P. E., Bruckert, E., Marais, D., Reiner, Z., Pirro, M., Sahebkar, A., International Lipid Expert Panel (ILEP), Bajraktari, G., Mirrakhimov, E., Rizzo, M., Mikhailidis, D. P., Sachinidis, A., Gaita, D., Latkovskis, G., Mazidi, M., Toth, P. P., Pella, D., Alnouri, F., Postadzhiyan, A., … Banach, M. (2022). Step‐by‐step diagnosis and management of the nocebo/drucebo effect in statin‐associated muscle symptoms patients: A position paper from the International Lipid Expert Panel (ILEP). Journal of Cachexia, Sarcopenia and Muscle, 13(3), 1596–1622. https://doi.org/10.1002/jcsm.12960. ; Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410. ; Pessayre, D., Fromenty, B., Berson, A., Robin, M. A., Letteron, P., Moreau, R., & Mansouri, A. (2012). Central role of mitochondria in drug‐induced liver injury. Drug Metabolism Reviews, 44(1), 34–87. https://doi.org/10.3109/03602532.2011.604086. ; Piccinin, E., Villani, G., & Moschetta, A. (2019). Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators. Nature Reviews. Gastroenterology & Hepatology, 16(3), 160–174. https://doi.org/10.1038/s41575-018-0089-3. ; Primassin, S., Ter Veld, F., Mayatepek, E., & Spiekerkoetter, U. (2008). Carnitine supplementation induces acylcarnitine production in tissues of very long‐chain acyl‐CoA dehydrogenase‐deficient mice, without replenishing low free carnitine. Pediatric Research, 63(6), 632–637. https://doi.org/10.1203/PDR.0b013e31816ff6f0. ; Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D., & Spiegelman, B. M. (2003). Insulin‐regulated hepatic gluconeogenesis through FOXO1–PGC‐1α interaction. Nature, 423(6939), 550–555. https://doi.org/10.1038/nature01667. ; Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72, 137–174. https://doi.org/10.1146/annurev.biochem.72.121801.161712. ; Schirris, T. J., Renkema, G. H., Ritschel, T., Voermans, N. C., Bilos, A., van Engelen, B. G., Brandt, U., Koopman, W. J. H., Beyrath, J. D., Rodenburg, R. J., Willems, P. H. G. M., Smeitink, J. A. M., & Russel, F. G. M. (2015). Statin‐induced myopathy is associated with mitochondrial complex III inhibition. Cell Metabolism, 22(3), 399–407. https://doi.org/10.1016/j.cmet.2015.08.002. ; Schuster, S., Cabrera, D., Arrese, M., & Feldstein, A. E. (2018). Triggering and resolution of inflammation in NASH. Nature Reviews. Gastroenterology & Hepatology, 15(6), 349–364. https://doi.org/10.1038/s41575-018-0009-6. ; Shriver, L. P., & Manchester, M. (2011). Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Scientific Reports, 1, 79. https://doi.org/10.1038/srep00079. ; Spiekerkoetter, U., Lindner, M., Santer, R., Grotzke, M., Baumgartner, M. R., Boehles, H., das, A., Haase, C., Hennermann, J. B., Karall, D., de Klerk, H., Knerr, I., Koch, H. G., Plecko, B., Röschinger, W., Schwab, K. O., Scheible, D., Wijburg, F. A., Zschocke, J., … Wendel, U. (2009). Management and outcome in 75 individuals with long‐chain fatty acid oxidation defects: Results from a workshop. Journal of Inherited Metabolic Disease, 32(4), 488–497. https://doi.org/10.1007/s10545-009-1125-9. ; Su, Q., Baker, C., Christian, P., Naples, M., Tong, X., Zhang, K., Santha, M., & Adeli, K. (2014). Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. American Journal of Physiology. Endocrinology and Metabolism, 306(11), E1264–E1273. https://doi.org/10.1152/ajpendo.00438.2013. ; Takei, S., Nagashima, S., Takei, A., Yamamuro, D., Wakabayashi, T., Murakami, A., Isoda, M., Yamazaki, H., Ebihara, C., Takahashi, M., Ebihara, K., Dezaki, K., Takayanagi, Y., Onaka, T., Fujiwara, K., Yashiro, T., & Ishibashi, S. (2020). β‐Cell‐specific deletion of HMG‐CoA (3‐hydroxy‐3‐methylglutaryl‐coenzyme A) reductase causes overt diabetes due to reduction of β‐cell mass and impaired insulin secretion. Diabetes, 69(11), 2352–2363. https://doi.org/10.2337/db19-0996. ; Tominaga, H., Katoh, H., Odagiri, K., Takeuchi, Y., Kawashima, H., Saotome, M., Urushida, T., Satoh, H., & Hayashi, H. (2008). Different effects of palmitoyl‐l‐carnitine and palmitoyl‐CoA on mitochondrial function in rat ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 295(1), H105–H112. https://doi.org/10.1152/ajpheart.01307.2007. ; Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional regulation by Nrf2. Antioxidants & Redox Signaling, 29(17), 1727–1745. https://doi.org/10.1089/ars.2017.7342. ; Vega, R. B., Huss, J. M., & Kelly, D. P. (2000). The coactivator PGC‐1 cooperates with peroxisome proliferator‐activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Molecular and Cellular Biology, 20(5), 1868–1876. https://doi.org/10.1128/MCB.20.5.1868-1876.2000. ; Ventura, F. V., Costa, C. G., Struys, E. A., Ruiter, J., Allers, P., Ijlst, L., Tavares de Almeida, I., Duran, M., Jakobs, C., & Wanders, R. J. A. (1999). Quantitative acylcarnitine profiling in fibroblasts using [U‐13C] palmitic acid: An improved tool for the diagnosis of fatty acid oxidation defects. Clinica Chimica Acta, 281(1–2), 1–17. https://doi.org/10.1016/s0009-8981(98)00188-0. ; Virani, S. S., Akeroyd, J. M., Nambi, V., Heidenreich, P. A., Morris, P. B., Nasir, K., Michos, E. D., Bittner, V. A., Petersen, L. A., & Ballantyne, C. M. (2017). Estimation of eligibility for proprotein convertase subtilisin/kexin type 9 inhibitors and associated costs based on the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk): Insights from the Department of Veterans Affairs. Circulation, 135(25), 2572–2574. https://doi.org/10.1161/CIRCULATIONAHA.117.028503. ; Vladutiu, G. D., Simmons, Z., Isackson, P. J., Tarnopolsky, M., Peltier, W. L., Barboi, A. C., Sripathi, N., Wortmann, R. L., & Phillips, P. S. (2006). Genetic risk factors associated with lipid‐lowering drug‐induced myopathies. Muscle & Nerve, 34(2), 153–162. https://doi.org/10.1002/mus.20567. ; Wanders, R. J. A., Visser, G., Ferdinandusse, S., Vaz, F. M., & Houtkooper, R. H. (2020). Mitochondrial fatty acid oxidation disorders: Laboratory diagnosis, pathogenesis, and the complicated route to treatment. Journal of Lipid and Atherosclerosis, 9(3), 313–333. https://doi.org/10.12997/jla.2020.9.3.313. ; Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141. ; Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., & Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC‐1. Cell, 98(1), 115–124. https://doi.org/10.1016/S0092-8674(00)80611-X. ; Yeh, Y. S., Jheng, H. F., Iwase, M., Kim, M., Mohri, S., Kwon, J., Kawarasaki, S., Li, Y., Takahashi, H., Ara, T., Nomura, W., Kawada, T., & Goto, T. (2018). The mevalonate pathway is indispensable for adipocyte survival. iScience, 9, 175–191. https://doi.org/10.1016/j.isci.2018.10.019. ; Zhang, P., Konja, D., Zhang, Y., & Wang, Y. (2021). Communications between mitochondria and endoplasmic reticulum in the regulation of metabolic homeostasis. Cells, 10, 2195. https://doi.org/10.3390/cells10092195.
  • Grant Information: 2019-01066 Vetenskapsrådet; 2022-00562 Vetenskapsrådet; Novo Nordisk Fonden; LZP-2023/1-0287 Latvijas Zinātnes Padome; 857394 Horizon 2020 Framework Programme; 857287 Horizon 2020 Framework Programme
  • Contributed Indexing: Keywords: HMG‐CoA reductase; Rosa26Cre mice; mitochondria; statins; tamoxifen‐induced knockout mouse model
  • Entry Date(s): Date Created: 20240420 Latest Revision: 20240420
  • Update Code: 20240420

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -