Zum Hauptinhalt springen

Intermembrane space-localized TbTim15 is an essential subunit of the single mitochondrial inner membrane protein translocase of trypanosomes.

von Känel C ; Oeljeklaus, S ; et al.
In: Molecular microbiology, Jg. 121 (2024-06-01), Heft 6, S. 1112-1126
academicJournal

Titel:
Intermembrane space-localized TbTim15 is an essential subunit of the single mitochondrial inner membrane protein translocase of trypanosomes.
Autor/in / Beteiligte Person: von Känel C ; Oeljeklaus, S ; Wenger, C ; Stettler, P ; Harsman, A ; Warscheid, B ; Schneider, A
Zeitschrift: Molecular microbiology, Jg. 121 (2024-06-01), Heft 6, S. 1112-1126
Veröffentlichung: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-, 2024
Medientyp: academicJournal
ISSN: 1365-2958 (electronic)
DOI: 10.1111/mmi.15262
Schlagwort:
  • Mitochondrial Precursor Protein Import Complex Proteins
  • Mitochondrial Proteins metabolism
  • Mitochondrial Proteins genetics
  • Membrane Transport Proteins metabolism
  • Membrane Transport Proteins genetics
  • Protein Subunits metabolism
  • Trypanosoma brucei brucei metabolism
  • Trypanosoma brucei brucei genetics
  • Trypanosoma brucei brucei enzymology
  • Protozoan Proteins metabolism
  • Protozoan Proteins genetics
  • Mitochondrial Membranes metabolism
  • Protein Transport
  • Mitochondria metabolism
  • Mitochondrial Membrane Transport Proteins metabolism
  • Mitochondrial Membrane Transport Proteins genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Mol Microbiol] 2024 Jun; Vol. 121 (6), pp. 1112-1126. <i>Date of Electronic Publication: </i>2024 Apr 15.
  • MeSH Terms: Trypanosoma brucei brucei* / metabolism ; Trypanosoma brucei brucei* / genetics ; Trypanosoma brucei brucei* / enzymology ; Protozoan Proteins* / metabolism ; Protozoan Proteins* / genetics ; Mitochondrial Membranes* / metabolism ; Protein Transport* ; Mitochondria* / metabolism ; Mitochondrial Membrane Transport Proteins* / metabolism ; Mitochondrial Membrane Transport Proteins* / genetics ; Mitochondrial Precursor Protein Import Complex Proteins ; Mitochondrial Proteins / metabolism ; Mitochondrial Proteins / genetics ; Membrane Transport Proteins / metabolism ; Membrane Transport Proteins / genetics ; Protein Subunits / metabolism
  • References: Agarwala, R., Barrett T., Beck J., Benson D.A., Bollin C., Bolton E., et al. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 44, D7–D19. ; Allen, J.W.A., Ferguson, S.J. & Ginger, M.L. (2008) Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine‐rich proteins. FEBS Letters, 582, 2817–2825. ; Allen, S., Balabanidou, V., Sideris, D.P., Lisowsky, T. & Tokatlidis, K. (2005) Erv1 mediates the Mia40‐dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. Journal of Molecular Biology, 353, 937–944. ; Banerjee, R., Gladkova, C., Mapa, K., Witte, G. & Mokranjac, D. (2015) Protein translocation channel of mitochondrial inner membrane and matrix‐exposed import motor communicate via two‐domain coupling protein. eLife, 4, e11897. ; Basu, S., Leonard, J.C., Desai, N., Mavridou, D.A.I., Tang, K.H., Goddard, A.D. et al. (2013) Divergence of Erv1‐associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryotic Cell, 12, 343–355. ; Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A. et al. (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49, 344–354. ; Bochud‐Allemann, N. & Schneider, A. (2002) Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei*. Journal of Biological Chemistry, 277, 32849–32854. ; Breitling, R. & Herzyk, P. (2005) Rank‐based methods as a non‐parametric alternative of the T‐statistic for the analysis of biological microarray data. Journal of Bioinformatics and Computational Biology, 3, 1171–1189. ; Burki, F., Roger, A.J., Brown, M.W. & Simpson, A.G.B. (2020) The new tree of eukaryotes. Trends in Ecology & Evolution, 35, 43–55. ; Ceh‐Pavia, E., Tang, X., Liu, Y., Heyes, D.J., Zhao, B., Xiao, P. et al. (2020) Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. The FEBS Journal, 287, 2281–2291. ; Chanez, A.L., Hehl, A.B., Engstler, M. & Schneider, A. (2006) Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. Journal of Cell Science, 119, 2968–2974. ; Chomczynski, P. & Sacchi, N. (1987) Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction. Analytical Biochemistry, 162, 156–159. ; Claros, M.G. & Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. European Journal of Biochemistry, 241, 779–786. ; Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26, 1367–1372. ; Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. & Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794–1805. ; Craig, E.A. (2018) Hsp70 at the membrane: driving protein translocation. BMC Biology, 16, 1–11. ; Cristodero, M., Seebeck, T. & Schneider, A. (2010) Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Molecular Microbiology, 78, 757–769. ; Dean, S., Gould, M.K., Dewar, C.E. & Schnaufer, A.C. (2013) Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 14741–14746. ; Del Carratore, F., Jankevics, A., Eisinga, R., Heskes, T., Hong, F. & Breitling, R. (2017) RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics, 33, 2774–2775. ; Deutsch, E.W., Bandeira, N., Perez‐Riverol, Y., Sharma, V., Carver, J.J., Mendoza, L. et al. (2023) The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Research, 51, D1539–D1548. ; D'Silva, P.D., Schilke, B., Walter, W., Andrew, A. & Craig, E.A. (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proceedings of the National Academy of Sciences of the United States of America, 100, 13839–13844. ; Eaglesfield, R. & Tokatlidis, K. (2021) Targeting and insertion of membrane proteins in mitochondria. Frontiers in Cell and Development Biology, 9. ; Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2, 953–971. ; Fenn, K. & Matthews, K.R. (2007) The cell biology of Trypanosoma brucei differentiation. Current Opinion in Microbiology, 10, 539–546. ; Ferramosca, A. & Zara, V. (2013) Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. Biochimica et Biophysica Acta, 1833, 494–502. ; Frazier, A.E., Dudek, J., Guiard, B., Voos, W., Li, Y., Lind, M. et al. (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nature Structural & Molecular Biology, 11, 226–233. ; Fukasawa, Y., Oda, T., Tomii, K. & Imai, K. (2017) Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Molecular Biology and Evolution, 34, 1574–1586. ; Gabler, F., Nam, S.Z., Till, S., Mirdita, M., Steinegger, M., Söding, J. et al. (2020) Protein sequence analysis using the MPI bioinformatics toolkit. Current Protocols in Bioinformatics, 72, e108. ; Gentle, I.E., Perry, A.J., Alcock, F.H., Likic, V.A., Dolezal, P., Ng, E.T. et al. (2007) Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Molecular Biology and Evolution, 24, 1149–1160. ; Gupta, A. & Becker, T. (2021) Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochimica et Biophysica Acta, 1862, 148323. ; Hansen, K.G. & Herrmann, J.M. (2019) Transport of proteins into mitochondria. The Protein Journal, 38, 330–342. ; Harsman, A., Oeljeklaus, S., Wenger, C., Huot, J.L., Warscheid, B. & Schneider, A. (2016) The non‐canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid‐like proteins. Nature Communications, 7, 1–13. ; Harsman, A. & Schneider, A. (2017) Mitochondrial protein import in trypanosomes: expect the unexpected. Traffic, 18, 96–109. ; Hirumi, H. & Hirumi, K. (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. Journal of Parasitology, 75, 985–989. ; Horst, M., Oppliger, W., Rospert, S., Schönfeld, H.J., Schatz, G. & Azem, A. (1997) Sequential action of two Hsp70 complexes during protein import into mitochondria. The EMBO Journal, 16, 1842–1849. ; Kang, P.J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A. & Pfanner, N. (1990) Requirement for Hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, 348, 137–143. ; Kaurov, I., Heller, J., Deisenhammer, S., Potěšil, D., Zdráhal, Z. & Hashimi, H. (2022) The essential cysteines in the CIPC motif of the thioredoxin‐like Trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo. Molecular and Biochemical Parasitology, 248, 111463. ; Kaurov, I., Vancová, M., Schimanski, B., Cadena, L.R., Heller, J., Bílý, T. et al. (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Current Biology, 28, 3393–3407. ; Khalimonchuk, O. & Winge, D.R. (2008) Function and redox state of mitochondrial localized cysteine‐rich proteins important in the assembly of cytochrome c oxidase. Biochimica et Biophysica Acta, 1783, 618–628. ; Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E.L.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567–580. ; Laloraya, S., Dekker, P.J.T., Voos, W., Craig, E.A. & Pfanner, N. (1995) Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Molecular and Cellular Biology, 15, 7098–7105. ; Laloraya, S., Gambill, B.D. & Craig, E.A. (1994) A role for a eukaryotic GrpE‐related protein, Mge1p, in protein translocation. Proceedings of the National Academy of Sciences of the United States of America, 91, 6481–6485. ; Lamour, N., Rivière, L., Coustou, V., Coombs, G.H., Barrett, M.P. & Bringaud, F. (2005) Proline metabolism in procyclic Trypanosoma brucei is down‐regulated in the presence of glucose. The Journal of Biological Chemistry, 280, 11902–11910. ; Letunic, I., Khedkar, S. & Bork, P. (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, 49, 458–460. ; Lithgow, T., Junne, T., Wachter, C. & Schatz, G. (1994) Yeast mitochondria lacking the two import receptors Mas20p and Mas70p can efficiently and specifically import precursor proteins. Journal of Biological Chemistry, 269, 15325–15330. ; Longen, S., Bien, M., Bihlmaier, K., Kloeppel, C., Kauff, F., Hammermeister, M. et al. (2009) Systematic analysis of the twin Cx9C protein family. Journal of Molecular Biology, 393, 356–368. ; Madison‐Antenucci, S., Sabatini, R.S., Pollard, V.W. & Hajduk, S.L. (1998) Kinetoplastid RNA‐editing‐associated protein 1 (REAP‐1): a novel editing complex protein with repetitive domains. EMBO Journal, 17, 6368–6376. ; Mani, J., Desy, S., Niemann, M., Chanfon, A., Oeljeklaus, S., Pusnik, M. et al. (2015) Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nature Communications, 6, 1–12. ; Mani, J., Meisinger, C. & Schneider, A. (2016) Peeping at TOMs—diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Molecular Biology and Evolution, 33, 337–351. ; Mani, J., Rout, S., Desy, S. & Schneider, A. (2017) Mitochondrial protein import ‐ functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Scientific Reports, 7, 1–12. ; Marom, M., Azem, A. & Mokranjac, D. (2011) Understanding the molecular mechanism of protein translocation across the mitochondrial inner membrane: still a long way to go. Biochimica et Biophysica Acta, 1808, 990–1001. ; Modjtahedi, N., Tokatlidis, K., Dessen, P. & Kroemer, G. (2016) Mitochondrial proteins containing coiled‐coil‐helix‐coiled‐coil‐helix (CHCH) domains in health and disease. Trends in Biochemical Sciences, 41, 245–260. ; Niemann, M., Wiese, S., Mani, J., Chanfon, A., Jackson, C., Meisinger, C. et al. (2013) Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Molecular & Cellular Proteomics, 12, 515–528. ; Oberholzer, M., Morand, S., Kunz, S. & Seebeck, T. (2006) A vector series for rapid PCR‐mediated C‐terminal in situ tagging of Trypanosoma brucei genes. Molecular and Biochemical Parasitology, 145, 117–120. ; Okamoto, H., Miyagawa, A., Shiota, T., Tamura, Y. & Endo, T. (2014) Intramolecular disulfide bond of Tim22 protein maintains integrity of the TIM22 complex in the mitochondrial inner membrane. The Journal of Biological Chemistry, 289, 4827–4838. ; Panigrahi, A.K., Zíková, A., Dalley, R.A., Acestor, N., Ogata, Y., Anupama, A. et al. (2008) Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Molecular & Cellular Proteomics, 7, 534–545. ; Peikert, C.D., Mani, J., Morgenstern, M., Käser, S., Knapp, B., Wenger, C. et al. (2017) Charting organellar importomes by quantitative mass spectrometry. Nature Communications, 8, 15272. ; Peleh, V., Cordat, E. & Herrmann, J.M. (2016) Mia40 is a trans‐site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife, 5. ; Peleh, V., Zannini, F., Backes, S., Rouhier, N. & Herrmann, J.M. (2017) Erv1 of Arabidopsis thaliana can directly oxidize mitochondrial intermembrane space proteins in the absence of redox‐active Mia40. BMC Biology, 15, 1–14. ; Peña‐Diaz, P., Pelosi, L., Ebikeme, C., Colasante, C., Gao, F., Bringaud, F. et al. (2012) Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei. Journal of Biological Chemistry, 287, 41861–41874. ; Perez‐Riverol, Y., Bai, J., Bandla, C., García‐Seisdedos, D., Hewapathirana, S., Kamatchinathan, S. et al. (2022) The PRIDE database resources in 2022: a hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552. ; Petrungaro, C., Zimmermann, K.M., Küttner, V., Fischer, M., Dengjel, J., Bogeski, I. et al. (2015) The Ca(2+)‐dependent release of the Mia40‐induced MICU1‐MICU2 Dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metabolism, 22, 721–733. ; Pyrihová, E., Motyčková, A., Voleman, L., Wandyszewska, N., Fišer, R., Seydlová, G. et al. (2018) A single TIM translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biology and Evolution, 10, 2813–2822. ; Roger, A.J., Muñoz‐Gómez, S.A. & Kamikawa, R. (2017) The origin and diversification of mitochondria. Current Biology, 27, 1177–1192. ; Roldán, A., Comini, M.A., Crispo, M. & Krauth‐Siegel, R.L. (2011) Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei. Molecular Microbiology, 81, 623–639. ; Schnaufer, A., Domingo, G.J. & Stuart, K. (2002) Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. International Journal for Parasitology, 32, 1071–1084. ; Schneider, A. (2018) Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLoS Pathogens, 14, e1007351. ; Schneider, A. (2020) Evolution of mitochondrial protein import—lessons from trypanosomes. Biological Chemistry, 401, 663–676. ; Schneider, H.C., Westermann, B., Neupert, W. & Brunner, M. (1996) The nucleotide exchange factor MGE exerts a key function in the ATP‐dependent cycle of mt‐Hsp70‐Tim44 interaction driving mitochondrial protein import. The EMBO Journal, 15, 5796–5803. ; Schönenberger, M. & Brun, R. (1979) Cultivation and in vitro cloning of procyclic culture forms of ‘Trypanosoma brucei’ in a semi‐defined medium: short communication. Acta Tropica, 36, 289–292. ; Schulz, C., Schendzielorz, A. & Rehling, P. (2015) Unlocking the presequence import pathway. Trends in Cell Biology, 25, 265–275. ; Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. ; Singha, U.K., Hamilton, V. & Chaudhuri, M. (2015) Tim62, a novel mitochondrial protein in Trypanosoma brucei, is essential for assembly and stability of the TbTim17 protein complex. The Journal of Biological Chemistry, 290, 23226–23239. ; Singha, U.K., Hamilton, V.N., Duncan, M.R., Weems, E., Tripathi, M.K. & Chaudhuri, M. (2012) Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. The Journal of Biological Chemistry, 287, 14480–14493. ; Singha, U.K., Peprah, E., Williams, S., Walker, R., Saha, L. & Chaudhuri, M. (2008) Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Molecular and Biochemical Parasitology, 159, 30–43. ; Singha, U.K., Tripathi, A., Smith, J.T., Jr., Quinones, L., Saha, A., Singha, T. et al. (2021) Novel IM‐associated protein Tim54 plays a role in the mitochondrial import of internal signal‐containing proteins in Trypanosoma brucei. Biology of the Cell, 113, 39–57. ; Smith, J.T., Singha, U.K., Misra, S. & Chaudhuri, M. (2018) Divergent small Tim homologues are associated with TbTim17 and critical for the biogenesis of TbTim17 protein complexes in Trypanosoma brucei. mSphere, 3. ; Szklarczyk, R., Wanschers, B.F.J., Nabuurs, S.B., Nouws, J., Nijtmans, L.G. & Huynen, M.A. (2011) NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Letters, 585, 737–743. ; Truscott, K.N., Voos, W., Frazier, A.E., Lind, M., Li, Y., Geissler, A. et al. (2003) A J‐protein is an essential subunit of the presequence translocase–associated protein import motor of mitochondria. The Journal of Cell Biology, 163, 707–713. ; Turra, G.L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J. et al. (2021) In vivo structure–function analysis and redox interactomes of leishmania tarentolae Erv. Microbiology Spectrum, 9, e0080921. ; van der Bliek, A.M., Sedensky, M.M. & Morgan, P.G. (2017) Cell biology of the mitochondrion. Genetics, 207, 843–871. ; Vögtle, F.N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert, K. et al. (2009) Global analysis of the mitochondrial N‐proteome identifies a processing peptidase critical for protein stability. Cell, 139, 428–439. ; von Känel, C., Muñoz‐Gómez, S.A., Oeljeklaus, S., Wenger, C., Warscheid, B., Wideman, J.G. et al. (2020) Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. eLife, 9. ; Wenger, C., Harsman, A., Niemann, M., Oeljeklaus, S., von Känel, C., Calderaro, S. et al. (2023) The Mba1 homologue of Trypanosoma brucei is involved in the biogenesis of oxidative phosphorylation complexes. Molecular Microbiology, 119, 537–550. ; Wenger, C., Oeljeklaus, S., Warscheid, B., Schneider, A. & Harsman, A. (2017) A trypanosomal orthologue of an intermembrane space chaperone has a non‐canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathogens, 13, e1006550. ; Wheeler, R.J. (2021) A resource for improved predictions of Trypanosoma and Leishmania protein three‐dimensional structure. PLoS One, 16, e0259871. ; Wiedemann, N. & Pfanner, N. (2017) Mitochondrial machineries for protein import and assembly. Annual Review of Microbiology, 86, 685–714. ; Wirtz, E., Leal, S., Ochatt, C. & Cross, G.A.M. (1999) A tightly regulated inducible expression system for conditional gene knock‐outs and dominant‐negative genetics in Trypanosoma brucei. Molecular and Biochemical Parasitology, 99, 89–101. ; Wrobel, L., Trojanowska, A., Sztolsztener, M.E. & Chacinska, A. (2013) Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Molecular Biology of the Cell, 24, 543–554. ; Žárský, V. & Doležal, P. (2016) Evolution of the Tim17 protein family. Biology Direct, 11, 54. ; Zimmermann, R. & Neupert, W. (1980) Transport of proteins into mitochondria: posttranslational transfer of ADP/ATP carrier into mitochondria in vitro. European Journal of Biochemistry, 109, 217–229.
  • Grant Information: NCCR RNA & Disease; 205601 National Centre of Competence in Research; SNF 205200 Switzerland SNSF_ Swiss National Science Foundation
  • Contributed Indexing: Keywords: Cx9X motifs; TIM complex; Trypanosomes; intermembrane space; mitochondrial protein import
  • Substance Nomenclature: 0 (Protozoan Proteins) ; 0 (Mitochondrial Membrane Transport Proteins) ; 0 (Mitochondrial Precursor Protein Import Complex Proteins) ; 0 (Mitochondrial Proteins) ; 0 (Membrane Transport Proteins) ; 0 (Protein Subunits)
  • Entry Date(s): Date Created: 20240416 Date Completed: 20240613 Latest Revision: 20240626
  • Update Code: 20240626

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -