Zum Hauptinhalt springen

An essential protease, FtsH, influences daptomycin resistance acquisition in Enterococcus faecalis.

Nair, ZJ ; Gao, IH ; et al.
In: Molecular microbiology, Jg. 121 (2024-05-01), Heft 5, S. 1021-1038
academicJournal

Titel:
An essential protease, FtsH, influences daptomycin resistance acquisition in Enterococcus faecalis.
Autor/in / Beteiligte Person: Nair, ZJ ; Gao, IH ; Firras, A ; Chong, KKL ; Hill, ED ; Choo, PY ; Colomer-Winter, C ; Chen, Q ; Manzano, C ; Pethe, K ; Kline, KA
Zeitschrift: Molecular microbiology, Jg. 121 (2024-05-01), Heft 5, S. 1021-1038
Veröffentlichung: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-, 2024
Medientyp: academicJournal
ISSN: 1365-2958 (electronic)
DOI: 10.1111/mmi.15253
Schlagwort:
  • Mutation
  • Drug Resistance, Bacterial genetics
  • Peptide Hydrolases metabolism
  • Peptide Hydrolases genetics
  • Methicillin-Resistant Staphylococcus aureus drug effects
  • Methicillin-Resistant Staphylococcus aureus genetics
  • Methicillin-Resistant Staphylococcus aureus metabolism
  • Enterococcus faecalis genetics
  • Enterococcus faecalis drug effects
  • Enterococcus faecalis metabolism
  • Enterococcus faecalis enzymology
  • Daptomycin pharmacology
  • Bacterial Proteins metabolism
  • Bacterial Proteins genetics
  • Anti-Bacterial Agents pharmacology
  • Microbial Sensitivity Tests
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Mol Microbiol] 2024 May; Vol. 121 (5), pp. 1021-1038. <i>Date of Electronic Publication: </i>2024 Mar 25.
  • MeSH Terms: Enterococcus faecalis* / genetics ; Enterococcus faecalis* / drug effects ; Enterococcus faecalis* / metabolism ; Enterococcus faecalis* / enzymology ; Daptomycin* / pharmacology ; Bacterial Proteins* / metabolism ; Bacterial Proteins* / genetics ; Anti-Bacterial Agents* / pharmacology ; Microbial Sensitivity Tests* ; Mutation ; Drug Resistance, Bacterial / genetics ; Peptide Hydrolases / metabolism ; Peptide Hydrolases / genetics ; Methicillin-Resistant Staphylococcus aureus / drug effects ; Methicillin-Resistant Staphylococcus aureus / genetics ; Methicillin-Resistant Staphylococcus aureus / metabolism
  • References: Afonina, I., Ong, J., Chua, J., Lu, T. & Kline, K.A. (2020) Multiplex CRISPRi system enables the study of stage‐specific biofilm genetic requirements in Enterococcus faecalis. MBio, 11, e01101–e01120. ; Aguilar‐Rodríguez, J., Sabater‐Muñoz, B., Montagud‐Martínez, R., Berlanga, V., Alvarez‐Ponce, D., Wagner, A. et al. (2016) The molecular chaperone DnaK is a source of mutational robustness. Genome Biology and Evolution, 8, 2979–2991. ; Al Mamun, A.A., Lombardo, M.J., Shee, C., Lisewski, A.M., Gonzalez, C., Lin, D. et al. (2012) Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science, 338, 1344–1348. ; Anglès, F., Castanié‐Cornet, M.‐P., Slama, N., Dinclaux, M., Cirinesi, A.‐M., Portais, J.‐C. et al. (2017) Multilevel interaction of the DnaK/DnaJ(HSP70/HSP40) stress‐responsive chaperone machine with the central metabolism. Scientific Reports, 7, 41341. ; Arends, J., Thomanek, N., Kuhlmann, K., Marcus, K. & Narberhaus, F. (2016) In vivo trapping of FtsH substrates by label‐free quantitative proteomics. Proteomics, 16, 3161–3172. ; Arias, C.A. & Murray, B.E. (2012) The rise of the enterococcus: beyond vancomycin resistance. Nature Reviews. Microbiology, 10, 266–278. ; Arias, C.A., Panesso, D., Mcgrath, D.M., Qin, X., Mojica, M.F., Miller, C. et al. (2011) Genetic basis for in vivo daptomycin resistance in enterococci. The New England Journal of Medicine, 365, 892–900. ; Bao, Y., Sakinc, T., Laverde, D., Wobser, D., Benachour, A., Theilacker, C. et al. (2012) Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis. PLoS One, 7, e38458. ; Barák, I. & Muchová, K. (2013) The role of lipid domains in bacterial cell processes. International Journal of Molecular Sciences, 14, 4050–4065. ; Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300. ; Bieniossek, C., Schalch, T., Bumann, M., Meister, M., Meier, R. & Baumann, U. (2006) The molecular architecture of the metalloprotease FtsH. Proceedings of the National Academy of Sciences of the United States of America, 103, 3066–3071. ; Boshoff, H.I.M., Reed, M.B., Barry, C.E. & Mizrahi, V. (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in mycobacterium tuberculosis. Cell, 113, 183–193. ; Carmeli, Y., Eliopoulos, G., Mozaffari, E. & Samore, M. (2002) Health and economic outcomes of vancomycin‐resistant enterococci. Archives of Internal Medicine, 162, 2223–2228. ; CH'ng, J.‐H., Chong, K.K.L., Lam, L.N., Wong, J.J. & Kline, K.A. (2019) Biofilm‐associated infection by enterococci. Nature Reviews Microbiology, 17, 82–94. ; Dadashi, M., Sharifian, P., Bostanshirin, N., Hajikhani, B., Bostanghadiri, N., Khosravi‐Dehaghi, N. et al. (2021) The global prevalence of Daptomycin, Tigecycline, and linezolid‐resistant Enterococcus faecalis and enterococcus faecium strains from human clinical samples: a systematic review and meta‐analysis. Front Med (Lausanne), 8, 720647. ; Deuerling, E., Mogk, A., Richter, C., Purucker, M. & Schumann, W. (1997) The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Molecular Microbiology, 23, 921–933. ; Do, T., Schaefer, K., Santiago, A.G., Coe, K.A., Fernandes, P.B., Kahne, D. et al. (2020) Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nature Microbiology, 5, 291–303. ; Edmond, M.B., Wallace, S.E., Mcclish, D.K., Pfaller, M.A., Jones, R.N. & Wenzel, R.P. (1999) Nosocomial bloodstream infections in United States hospitals: a three‐year analysis. Clinical Infectious Diseases, 29, 239–244. ; Erill, I., Campoy, S. & Barbé, J. (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiology Reviews, 31, 637–656. ; Ernst, C.M. & Peschel, A. (2011) Broad‐spectrum antimicrobial peptide resistance by MprF‐mediated aminoacylation and flipping of phospholipids. Molecular Microbiology, 80, 290–299. ; Ernst, C.M., Slavetinsky, C.J., Kuhn, S., Hauser, J.N., Nega, M., Mishra, N.N. et al. (2018) Gain‐of‐function mutations in the phospholipid Flippase MprF confer specific Daptomycin resistance. MBio, 9, e01659‐18. ; Esnaola, M., Puig, P., Gonzalez, D., Castelo, R. & Gonzalez, J.R. (2013) A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA‐seq experiments. BMC Bioinformatics, 14, 254. ; Fay, A., Philip, J., Saha, P., Hendrickson, R.C., Glickman, M.S. & BURNS‐Huang, K. (2021) The DnaK chaperone system buffers the fitness cost of antibiotic resistance mutations in mycobacteria. MBio, 12, e00123‐21. ; García‐Fernández, E., Koch, G., Wagner, R.M., Fekete, A., Stengel, S.T., Schneider, J. et al. (2017) Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell, 171, 1354–1367.e20. ; Good, P. (2013) Permutation tests: a practical guide to resampling methods for testing hypotheses. New York, NY: Springer. ; Harrison, C. (2003) GrpE, a nucleotide exchange factor for DnaK. Cell Stress & Chaperones, 8, 218–224. ; Hayer‐Hartl, M., Bracher, A. & Hartl, F.U. (2016) The GroEL–GroES chaperonin machine: a Nano‐cage for protein folding. Trends in Biochemical Sciences, 41, 62–76. ; Hidron, A.I., Edwards, J.R., Patel, J., Horan, T.C., Sievert, D.M., Pollock, D.A. et al. (2008) NHSN annual update: antimicrobial‐resistant pathogens associated with healthcare‐associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006‐2007. Infection Control and Hospital Epidemiology, 29, 996–1011. ; Hollenbeck, B.L. & Rice, L.B. (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3, 421–569. ; Kamal, S.M., Rybtke, M.L., Nimtz, M., Sperlein, S., Giske, C., Trček, J. et al. (2019) Two FtsH proteases contribute to fitness and adaptation of Pseudomonas aeruginosa clone C strains. Frontiers in Microbiology, 10, 1372. ; Kelesidis, T., Humphries, R., Uslan, D.Z. & Pegues, D.A. (2011) Daptomycin nonsusceptible enterococci: an emerging challenge for clinicians. Clinical Infectious Diseases, 52, 228–234. ; Khan, A., Davlieva, M., Panesso, D., Rincon, S., Miller, W.R., Diaz, L. et al. (2019) Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in enterococcus faecalis. Proceedings of the National Academy of Sciences, 116, 26925–26932. ; Kristich, C.J., Nguyen, V.T., Le, T., Barnes, A.M., Grindle, S. & Dunny, G.M. (2008) Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome. Applied and Environmental Microbiology, 74, 3377–3386. ; Langklotz, S., Baumann, U. & Narberhaus, F. (2012) Structure and function of the bacterial AAA protease FtsH. Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research, 1823, 40–48. ; Li, L., Higgs, C., Turner, A.M., Nong, Y., Gorrie, C.L., Sherry, N.L. et al. (2021) Daptomycin resistance occurs predominantly in vanA‐type vancomycin‐resistant enterococcus faecium in Australasia and is associated with heterogeneous and novel mutations. Frontiers in Microbiology, 12, 749935. ; Li, W., Hu, J., Li, L., Zhang, M., Cui, Q., Ma, Y. et al. (2022) New mutations in cls Lead to Daptomycin resistance in a clinical vancomycin‐ and Daptomycin‐resistant enterococcus faecium strain. Frontiers in Microbiology, 13, 896916. ; Liu, W., Schoonen, M., Wang, T., Mcsweeney, S. & Liu, Q. (2022) Cryo‐EM structure of transmembrane AAA+ protease FtsH in the ADP state. Communications Biology, 5, 257. ; Lopez, D. & Koch, G. (2017) Exploring functional membrane microdomains in bacteria: an overview. Current Opinion in Microbiology, 36, 76–84. ; Maddalo, G., Chovanec, P., STENBERG‐Bruzell, F., Nielsen, H.V., Jensen‐Seaman, M.I., Ilag, L.L. et al. (2011) A reference map of the membrane proteome of Enterococcus faecalis. Proteomics, 11, 3935–3941. ; Mascini, E.M. & Bonten, M.J.M. (2005) Vancomycin‐resistant enterococci: consequences for therapy and infection control. Clinical Microbiology and Infection, 11, 43–56. ; Merrikh, H. & Kohli, R.M. (2020) Targeting evolution to inhibit antibiotic resistance. The FEBS Journal, 287, 4341–4353. ; Miller, C., Kong, J., Tran, T.T., Arias, C.A., Saxer, G. & Shamoo, Y. (2013) Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance. Antimicrobial Agents and Chemotherapy, 57, 5373–5383. ; Miller, W.R., Bayer, A.S. & Arias, C.A. (2016) Mechanism of action and resistance to Daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harbor Perspectives in Medicine, 6, a026997. ; Miller, W.R., Munita, J.M. & Arias, C.A. (2014) Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti‐Infective Therapy, 12, 1221–1236. ; Miller, W.R., Murray, B.E., Rice, L.B. & Arias, C.A. (2020) Resistance in Vancomycin‐Resistant Enterococci. Infectious Disease Clinics of North America, 34, 751–771. ; Mishra, N.N., Bayer, A.S., Tran, T.T., Shamoo, Y., Mileykovskaya, E., Dowhan, W. et al. (2012) Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One, 7, e43958. ; Mishra, N.N., Lew, C., Abdelhady, W., Lapitan, C.K., Proctor, R.A., Rose, W.E. et al. (2022) Synergy mechanisms of Daptomycin‐Fosfomycin combinations in Daptomycin‐susceptible and ‐resistant methicillin‐resistant Staphylococcus aureus: in vitro, ex vivo, and in vivo metrics. Antimicrobial Agents and Chemotherapy, 66, e0164921. ; Mishra, N.N., Yang, S.‐J., Sawa, A., Rubio, A., Nast, C.C., Yeaman, M.R. et al. (2009) Analysis of cell membrane characteristics of in vitro‐selected daptomycin‐resistant strains of methicillin‐resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 53, 2312–2318. ; Müller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T.N.V., Kohl, B. et al. (2016) Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 113, E7077–E7086. ; Munita, J.M., Murray, B.E. & Arias, C.A. (2014) Daptomycin for the treatment of bacteraemia due to vancomycin‐resistant enterococci. International Journal of Antimicrobial Agents, 44, 387–395. ; Munoz‐Price, L.S., Lolans, K. & Quinn, J.P. (2005) Emergence of resistance to Daptomycin during treatment of vancomycin‐resistant Enterococcus faecalis infection. Clinical Infectious Diseases, 41, 565–566. ; Murdoch, D.R., Corey, G.R., Hoen, B., Miro, J.M., Fowler, V.G., Jr., Bayer, A.S. et al. (2009) Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the international collaboration on endocarditis‐prospective cohort study. Archives of Internal Medicine, 169, 463–473. ; Niwa, H., Tsuchiya, D., Makyio, H., Yoshida, M. & Morikawa, K. (2002) Hexameric ring structure of the ATPase domain of the membrane‐integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure, 10, 1415–1424. ; Okuno, T. & Ogura, T. (2013) FtsH protease‐mediated regulation of various cellular functions. Sub‐Cellular Biochemistry, 66, 53–69. ; Ota, Y., Furuhashi, K., Hayashi, W., Hirai, N., Ishikawa, J., Nagura, O. et al. (2021) Daptomycin resistant Enterococcus faecalis has a mutation in liaX, which encodes a surface protein that inhibits the LiaFSR systems and cell membrane remodeling. Journal of Infection and Chemotherapy, 27, 90–93. ; Palmer, K.L., Daniel, A., Hardy, C., Silverman, J. & Gilmore, M.S. (2011) Genetic basis for daptomycin resistance in enterococci. Antimicrobial Agents and Chemotherapy, 55, 3345–3356. ; Patel, R. & Gallagher, J.C. (2015) Vancomycin‐resistant enterococcal bacteremia pharmacotherapy. The Annals of Pharmacotherapy, 49, 69–85. ; Patterson, J.E., Sweeney, A.H., Simms, M., Carley, N., Mangi, R., Sabetta, J. et al. (1995) An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine (Baltimore), 74, 191–200. ; Pfaller, M.A., Cormican, M., Flamm, R.K., Mendes, R.E. & Jones, R.N. (2019) Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of enterococci: results from the SENTRY antimicrobial surveillance program, 1997‐2016. Open Forum Infectious Diseases, 6, S54–S62. ; Prater, A.G., Mehta, H.H., Beabout, K., Supandy, A., Miller, W.R., Tran, T.T. et al. (2021) Daptomycin resistance in enterococcus faecium can Be delayed by disruption of the LiaFSR stress response pathway. Antimicrobial Agents and Chemotherapy, 65, e01317–e01320. ; Prematunge, C., Macdougall, C., Johnstone, J., Adomako, K., Lam, F., Robertson, J. et al. (2016) VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic review and meta‐analysis. Infection Control and Hospital Epidemiology, 37, 26–35. ; Ragheb, M.N., Thomason, M.K., Hsu, C., Nugent, P., Gage, J., Samadpour, A.N. et al. (2019) Inhibiting the evolution of antibiotic resistance. Molecular Cell, 73, 157–165.e5. ; Rashid, R., Cazenave‐Gassiot, A., Gao, I.H., Nair, Z.J., Kumar, J.K., Gao, L. et al. (2017) Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS One, 12, e0175886. ; Rashid, R., Nair, Z.J., Chia, D.M.H., Chong, K.K.L., Gassiot, A.C., Morley, S.A. et al. (2023) Depleting cationic lipids involved in antimicrobial resistance drives adaptive lipid remodeling in Enterococcus faecalis. MBio, 14, e03073‐22. ; Rashid, R., Veleba, M. & Kline, K.A. (2016) Focal targeting of the bacterial envelope by antimicrobial peptides. Frontiers in Cell and Developmental Biology, 4, 55. ; Reinseth, I.S., Ovchinnikov, K.V., Tønnesen, H.H., Carlsen, H. & Diep, D.B. (2020) The increasing issue of vancomycin‐resistant enterococci and the Bacteriocin solution. Probiotics and Antimicrobial Proteins, 12, 1203–1217. ; Reyes, J., Panesso, D., Tran, T.T., Mishra, N.N., Cruz, M.R., Munita, J.M. et al. (2015) A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug‐resistant Enterococcus faecalis. The Journal of Infectious Diseases, 211, 1317–1325. ; Sabat, A.J., Tinelli, M., Grundmann, H., Akkerboom, V., Monaco, M., del Grosso, M. et al. (2018) Daptomycin resistant Staphylococcus aureus clinical strain with novel non‐synonymous mutations in the mprF and vraS genes: a new insight into Daptomycin resistance. Frontiers in Microbiology, 9, 2705. ; Satlin, M.J., Nicolau, D.P., Humphries, R.M., Kuti, J.L., Campeau, S.A., Lewis Ii, J.S. et al. (2019) Development of Daptomycin susceptibility breakpoints for enterococcus faecium and revision of the breakpoints for other Enterococcal species by the clinical and laboratory standards institute. Clinical Infectious Diseases, 70, 1240–1246. ; Schumann, W. (2016) Regulation of bacterial heat shock stimulons. Cell Stress & Chaperones, 21, 959–968. ; Shoemaker, D.M., Simou, J. & Roland, W.E. (2006) A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Therapeutics and Clinical Risk Management, 2, 169–174. ; Sinel, C., Cosquer, T., Auzou, M., Goux, D., Giard, J.‐C. & Cattoir, V. (2016) Sequential steps of daptomycin resistance in enterococcus faecium and reversion to hypersusceptibility through IS‐mediated inactivation of the liaFSR operon. Journal of Antimicrobial Chemotherapy, 71, 2793–2797. ; Song, X., Srinivasan, A., Plaut, D. & Perl, T.M. (2003) Effect of nosocomial vancomycin‐resistant enterococcal bacteremia on mortality, length of stay, and costs. Infection Control and Hospital Epidemiology, 24, 251–256. ; Steenbergen, J.N., Alder, J., Thorne, G.M. & Tally, F.P. (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious gram‐positive infections. The Journal of Antimicrobial Chemotherapy, 55, 283–288. ; Stinemetz, E.K., Gao, P., Pinkston, K.L., Montealegre, M.C., Murray, B.E. & Harvey, B.R. (2017) Processing of the major autolysin of E. Faecalis, AtlA, by the zinc‐metalloprotease, GelE, impacts AtlA septal localization and cell separation. PLoS One, 12, e0186706. ; Sulaiman, J.E. & Lam, H. (2021) Novel Daptomycin tolerance and resistance mutations in methicillin‐resistant Staphylococcus aureus from adaptive laboratory evolution. mSphere, 6, e0069221. ; Suomi, T., Seyednasrollah, F., Jaakkola, M.K., Faux, T. & Elo, L.L. (2017) ROTS: an R package for reproducibility‐optimized statistical testing. PLoS Computational Biology, 13, e1005562. ; Taylor, S.D. & Palmer, M. (2016) The action mechanism of daptomycin. Bioorganic & Medicinal Chemistry, 24, 6253–6268. ; Tran, T.T., Munita, J.M. & Arias, C.A. (2015) Mechanisms of drug resistance: daptomycin resistance. Annals of the New York Academy of Sciences, 1354, 32–53. ; Tran, T.T., Panesso, D., Gao, H., Roh, J.H., Munita, J.M., Reyes, J. et al. (2013) Whole‐genome analysis of a Daptomycin‐susceptible enterococcus faecium strain and its Daptomycin‐resistant variant arising during therapy. Antimicrobial Agents and Chemotherapy, 57, 261–268. ; Tran, T.T., Panesso, D., Mishra, N.N., Mileykovskaya, E., Guan, Z., Munita, J.M. et al. (2013) Daptomycin‐resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio, 4, e00281‐13. ; Vollmer, W., Joris, B., Charlier, P. & Foster, S. (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 32, 259–286. ; Wang, G., Yu, F., Lin, H., Murugesan, K., Huang, W., Hoss, A.G. et al. (2018) Evolution and mutations predisposing to daptomycin resistance in vancomycin‐resistant enterococcus faecium ST736 strains. PLoS One, 13, e0209785. ; Weiner, L.M., Webb, A.K., Limbago, B., Dudeck, M.A., Patel, J., Kallen, A.J. et al. (2016) Antimicrobial‐resistant pathogens associated with healthcare‐associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011‐2014. Infection Control and Hospital Epidemiology, 37, 1288–1301. ; Wiegand, I., Hilpert, K. & Hancock, R.E. (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3, 163–175. ; Yepes, A., Schneider, J., Mielich, B., Koch, G., García‐Betancur, J.C., Ramamurthi, K.S. et al. (2012) The biofilm formation defect of a Bacillus subtilis flotillin‐defective mutant involves the protease FtsH. Molecular Microbiology, 86, 457–471. ; Zarb, P., Coignard, B., Griskeviciene, J., Muller, A., Vankerckhoven, V., Weist, K. et al. (2012) The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare‐associated infections and antimicrobial use. Eurosurveillance, 17, 20316.
  • Grant Information: MOE2017-T1-001-269 Ministry of Education - Singapore; Singapore-MIT Alliance for Research and Technology (SMART) Centre; MOH-000645 National Medical Research Council; 310030_212262 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; Singapore Centre for Environmental Life Sciences Engineering (SCELSE)
  • Contributed Indexing: Keywords: Enterococcus faecalis; ftsH; hrcA; Daptomycin resistance; chaperones; multiple peptide resistance factor (mprF)
  • Entry Date(s): Date Created: 20240325 Date Completed: 20240515 Latest Revision: 20240530
  • Update Code: 20240531

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -