Zum Hauptinhalt springen

Metabolic effects of an essential amino acid supplement in adolescents with PCOS and obesity.

Fordham, TM ; Morelli, NS ; et al.
In: Obesity (Silver Spring, Md.), Jg. 32 (2024-04-01), Heft 4, S. 678-690
academicJournal

Titel:
Metabolic effects of an essential amino acid supplement in adolescents with PCOS and obesity.
Autor/in / Beteiligte Person: Fordham, TM ; Morelli, NS ; Garcia-Reyes, Y ; Ware, MA ; Rahat, H ; Sundararajan, D ; Fuller, KNZ ; Severn, C ; Pyle, L ; Malloy, CR ; Jin, ES ; Parks, EJ ; Wolfe, RR ; Cree, MG
Zeitschrift: Obesity (Silver Spring, Md.), Jg. 32 (2024-04-01), Heft 4, S. 678-690
Veröffentlichung: 2013- : Malden, MA : John Wiley & Sons ; <i>Original Publication</i>: Silver Spring, MD : NAASO, the Obesity Society, c2006-, 2024
Medientyp: academicJournal
ISSN: 1930-739X (electronic)
DOI: 10.1002/oby.23988
Schlagwort:
  • Adolescent
  • Female
  • Humans
  • Insulin
  • Lipoproteins, VLDL
  • Obesity complications
  • Fatty Liver
  • Hyperandrogenism complications
  • Insulin Resistance
  • Polycystic Ovary Syndrome drug therapy
  • Polycystic Ovary Syndrome complications
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Randomized Controlled Trial; Journal Article
  • Language: English
  • [Obesity (Silver Spring)] 2024 Apr; Vol. 32 (4), pp. 678-690. <i>Date of Electronic Publication: </i>2024 Mar 04.
  • MeSH Terms: Fatty Liver* ; Hyperandrogenism* / complications ; Insulin Resistance* ; Polycystic Ovary Syndrome* / drug therapy ; Polycystic Ovary Syndrome* / complications ; Adolescent ; Female ; Humans ; Insulin ; Lipoproteins, VLDL ; Obesity / complications
  • References: Knochenhauer ES, Key TJ, Kahsar‐Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and White women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83(9):3078‐3082. ; Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565‐4592. ; Arslanian SA, Lewy VD, Danadian K. Glucose intolerance in obese adolescents with polycystic ovary syndrome: roles of insulin resistance and β‐cell dysfunction and risk of cardiovascular disease. J Clin Endocrinol Metab. 2001;86(1):66‐71. ; Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR. Polycystic ovary syndrome is associated with tissue‐specific differences in insulin resistance. J Clin Endocrinol Metab. 2009;94(1):157‐163. ; Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A. Characterization of groups of hyperaiidrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab. 1987;65(3):499‐507. ; Cree‐Green M, Bergman BC, Coe GV, et al. Hepatic steatosis is common in adolescents with obesity and PCOS and relates to de novo lipogenesis but not insulin resistance. Obesity (Silver Spring). 2016;24(11):2399‐2406. ; Cree‐Green M, Rahat H, Newcomer BR, et al. Insulin resistance, hyperinsulinemia, and mitochondria dysfunction in nonobese girls with polycystic ovarian syndrome. J Endocr Soc. 2017;1(7):931‐944. ; Carreau AM, Pyle L, Garcia‐Reyes Y, et al. Clinical prediction score of nonalcoholic fatty liver disease in adolescent girls with polycystic ovary syndrome (PCOS‐HS index). Clin Endocrinol (Oxf). 2019;91(4):544‐552. ; Huguelet PS, Olson E, Sass A, Bartz S, Hsu S, Cree‐Green M. Application of a standard cross‐specialty workup for diagnosis and metabolic screening of obese adolescents with polycystic ovary syndrome. J Adolesc Health. 2021;68(3):589‐595. ; Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411‐428. ; Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123‐133. ; Cerda C, Pérez‐Ayuso RM, Riquelme A, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. J Hepatol. 2007;47(3):412‐417. ; Gambarin‐Gelwan M, Kinkhabwala SV, Schiano TD, Bodian C, Yeh HC, Futterweit W. Prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clin Gastroenterol Hepatol. 2007;5(4):496‐501. ; Syed‐Abdul MM, Parks EJ, Gaballah AH, et al. Fatty acid synthase inhibitor TVB‐2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology. 2020;72(1):103‐118. ; Vos MB, Abrams SH, Barlow SE, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64(2):319‐334. ; Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343‐1351. ; Lambert JE, Ramos‐Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726‐735. ; Santoro N, Caprio S, Pierpont B, Van Name M, Savoye M, Parks EJ. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J Clin Endocrinol Metab. 2015;100(8):E1125‐E1132. ; Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab. 2011;96(3):861‐868. ; Stuppy J, Parks E, Carreau A, et al. Excess de novo lipogenesis mediates hepatic steatosis in obese adolescents with polycystic ovarian syndrome. J Investig Med. 2019;67(1):232. Western Medical Research Conference Abstract 389. ; Schwarz JM, Noworolski SM, Erkin‐Cakmak A, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017;153(3):743‐752. ; Westerbacka J, Lammi K, Häkkinen AM, et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab. 2005;90(5):2804‐2809. ; Orgeron ML, Stone KP, Wanders D, Cortez CC, Van NT, Gettys TW. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog Mol Biol Transl Sci. 2014;121:351‐376. ; Marquis BJ, Hurren NM, Carvalho E, et al. Skeletal muscle acute and chronic metabolic response to essential amino acid supplementation in hypertriglyceridemic older adults. Curr Dev Nutr. 2017;1(11):e002071. ; Coker MS, Ladd KR, Kim J, et al. Essential amino acid supplement lowers intrahepatic lipid despite excess alcohol consumption. Nutrients. 2020;12(1):254. ; Ezeh U, Chen IYD, Chen YH, Azziz R. Adipocyte insulin resistance in PCOS: relationship with GLUT‐4 expression and whole‐body glucose disposal and β‐cell function. J Clin Endocrinol Metab. 2020;105(7):e2408‐e2420. ; McBreairty LE, Chilibeck PD, Gordon JJ, Chizen DR, Zello GA. Polycystic ovary syndrome is a risk factor for sarcopenic obesity: a case control study. BMC Endocr Disord. 2019;19:70. ; Paddon‐Jones D, Sheffield‐Moore M, Aarsland A, Wolfe RR, Ferrando AA. Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005;288(4):E761‐E767. ; Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence‐based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2018;89(3):251‐268. ; Pate RR, Ross R, Dowda M, Trost SG, Sirard JR. Validation of a 3‐day physical activity recall instrument in female youth. Pediatr Exerc Sci. 2003;15:257‐265. ; Jin ES, Sherry AD, Malloy CR. An oral load of [13C3]glycerol and blood NMR analysis detect fatty acid esterification, pentose phosphate pathway, and glycerol metabolism through the tricarboxylic acid cycle in human liver. J Biol Chem. 2016;291(36):19031‐19041. ; Bartlette K, Carreau AM, Xie D, et al. Oral minimal model‐based estimates of insulin sensitivity in obese youth depend on oral glucose tolerance test protocol duration. Metabol Open. 2021;9:100078. ; Børsheim E, Bui QUT, Tissier S, et al. Amino acid supplementation decreases plasma and liver triglycerides in elderly. Nutrition. 2009;25(3):281‐288. ; Syed‐Abdul MM, Jacome‐Sosa M, Hu Q, et al. The tailgate study: differing metabolic effects of a bout of excessive eating and drinking. Alcohol. 2021;90:45‐55. ; Ampong I, Watkins A, Gutierrez‐Merino J, Ikwuobe J, Griffiths HR. Dietary protein insufficiency: an important consideration in fatty liver disease? Br J Nutr. 2020;123(6):601‐609. ; Bortolotti M, Kreis R, Debard C, et al. High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr. 2009;90(4):1002‐1010. ; Smith GI, Yoshino J, Stromsdorfer KL, et al. Protein ingestion induces muscle insulin resistance independent of leucine‐mediated mTOR activation. Diabetes. 2015;64(5):1555‐1563. ; Wolfe R, Klein S. Assessment of the control of the triglyceride/fatty acid cycle. In: Chapman TE, Berger R, Reyngoud DJ, Okken A, eds. Stable Isotopes in Paediatric Nutritional and Metabolic Research. Intercept Ltd; 1990:115‐122. ; Theytaz F, Noguchi Y, Egli L, et al. Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am J Clin Nutr. 2012;96(5):1008‐1016. ; Errasti‐Murugarren E, Fort J, Bartoccioni P, et al. L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun. 2019;10(1):1807. ; Hasek BE, Boudreau A, Shin J, et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes. 2013 Oct;62(10):3362‐3372. ; Orentreich N, Matias JR, DeFelice A, Zimmerman JA. Low methionine ingestion by rats extends life span. J Nutr. 1993;123(2):269‐274. ; Klein Geltink RI, Pearce EL. The importance of methionine metabolism. eLife. 2019;8:e47221. ; Nisoli E, Cozzi V, Carruba MO. Amino acids and mitochondrial biogenesis. Am J Cardiol. 2008;101(11A):22E‐25E. ; Chen Z, Newberry EP, Norris JY, et al. ApoB100 is required for increased VLDL‐triglyceride secretion by microsomal triglyceride transfer protein in Ob/Ob mice. J Lipid Res. 2008;49(9):2013‐2022. ; Nishimura J, Masaki T, Arakawa M, Seike M, Yoshimatsu H. Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARα and uncoupling protein in diet‐induced obese mice. J Nutr. 2010;140(3):496‐500. ; Ma Q, Zhou X, Sun Y, et al. Threonine, but not lysine and methionine, reduces fat accumulation by regulating lipid metabolism in obese mice. J Agric Food Chem. 2020;68(17):4876‐4883. ; Lin HY, Chen CC, Chen YJ, Lin YY, Mersmann HJ, Ding ST. Enhanced amelioration of high‐fat diet‐induced fatty liver by docosahexaenoic acid and lysine supplementations. Biomed Res Int. 2014;25(2014):e310981. ; Tanphaichitr V, Zaklama MS, Broquist HP. Dietary lysine and carnitine: relation to growth and fatty livers in rats. J Nutr. 1976;106(1):111‐117. ; Xu L, Kanasaki M, He J, et al. Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy‐associated molecules. Biochim Biophys Acta. 2013;1832(10):1605‐1612. ; McGarrah RW, Zhang GF, Christopher BA, et al. Dietary branched‐chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats. Am J Physiol Endocrinol Metab. 2020;318(2):E216‐E223. ; White PJ, Lapworth AL, An J, et al. Branched‐chain amino acid restriction in Zucker‐fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl‐glycine export. Mol Metab. 2016;5(7):538‐551. ; Traussnigg S, Kienbacher C, Gajdošík M, et al. Ultra‐high‐field magnetic resonance spectroscopy in non‐alcoholic fatty liver disease: novel mechanistic and diagnostic insights of energy metabolism in non‐alcoholic steatohepatitis and advanced fibrosis. Liver Int. 2017;37(10):1544‐1553. ; Ramos‐Roman MA, Syed‐Abdul MM, Casey BM, Alger JR, Liu YL, Parks EJ. Lactation alters the relationship between liver lipid synthesis and hepatic fat stores in the postpartum period. J Lipid Res. 2022;63(11):100288. ; Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138(6):1039‐1046.
  • Grant Information: UL1 TR002535 United States TR NCATS NIH HHS; United States DDCF Doris Duke Charitable Foundation; UL1 TR002535 United States TR NCATS NIH HHS
  • Substance Nomenclature: 0 (Insulin) ; 0 (Lipoproteins, VLDL)
  • Entry Date(s): Date Created: 20240305 Date Completed: 20240327 Latest Revision: 20240403
  • Update Code: 20240403

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -