Zum Hauptinhalt springen

Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan.

Aguilar, BA ; Vieira, S ; et al.
In: Hypertension research : official journal of the Japanese Society of Hypertension, Jg. 47 (2024-05-01), Heft 5, S. 1350-1361
academicJournal

Titel:
Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan.
Autor/in / Beteiligte Person: Aguilar, BA ; Vieira, S ; Veiga, AC ; da Silva JVMB ; Paixao, TV ; Rodrigues, KP ; Tank, J ; Ruys, LA ; de Souza HCD
Zeitschrift: Hypertension research : official journal of the Japanese Society of Hypertension, Jg. 47 (2024-05-01), Heft 5, S. 1350-1361
Veröffentlichung: 2009- : London : Nature Publishing Group ; <i>Original Publication</i>: Toyonaka, Japan : The Society, c1992-2003, 2024
Medientyp: academicJournal
ISSN: 1348-4214 (electronic)
DOI: 10.1038/s41440-024-01611-z
Schlagwort:
  • Animals
  • Male
  • Rats
  • Blood Pressure drug effects
  • Losartan pharmacology
  • Losartan therapeutic use
  • Rats, Inbred SHR
  • Myocardial Contraction drug effects
  • Hypertension drug therapy
  • Hypertension physiopathology
  • Physical Conditioning, Animal physiology
  • Antihypertensive Agents pharmacology
  • Antihypertensive Agents therapeutic use
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Hypertens Res] 2024 May; Vol. 47 (5), pp. 1350-1361. <i>Date of Electronic Publication: </i>2024 Feb 28.
  • MeSH Terms: Losartan* / pharmacology ; Losartan* / therapeutic use ; Rats, Inbred SHR* ; Myocardial Contraction* / drug effects ; Hypertension* / drug therapy ; Hypertension* / physiopathology ; Physical Conditioning, Animal* / physiology ; Antihypertensive Agents* / pharmacology ; Antihypertensive Agents* / therapeutic use ; Animals ; Male ; Rats ; Blood Pressure / drug effects
  • Comments: Comment in: Hypertens Res. 2024 May 15;:. (PMID: 38750223)
  • References: Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979;1:508–17. (PMID: 54104210.1161/01.HYP.1.5.508) ; Dornas WC, Silva ME. Animal models for the study of arterial hypertension. J Biosci. 2011;36:731–7. (PMID: 2185712010.1007/s12038-011-9097-y) ; Masson GS, Michelini LC. Autonomic dysfunction, sympathetic hyperactivity and the development of end-organ damage in hypertension: multiple benefits of exercise training. Hear Res Open J. 2015;2:60–9. (PMID: 10.17140/HROJ-2-111) ; Shanks J, Manou-Stathopoulou S, Lu CJ, Li D, Paterson DJ, Herring N. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Hear Circ Physiol. 2013;305:980–6. (PMID: 10.1152/ajpheart.00255.2013) ; Williams B, Mancia G, Spiering W, Rosei EA, AZIZI M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104. (PMID: 3016551610.1093/eurheartj/ehy339) ; Da Costa Rebelo RM, Schreckenberg R, Schlüter KD. Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol. 2012;590:5389–400. (PMID: 22930266351582610.1113/jphysiol.2012.241141) ; Schultz RL, Swallow JG, Waters RP, Kuzman JA, Redetzke RA, Said S, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50:410–6. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.106.086371 . (PMID: 1759207310.1161/HYPERTENSIONAHA.106.086371) ; Vieira S, Aguilar BA, Veiga AC, Philbois SV, Freitas ACS, Rodrigues KP, et al. Integrative physiological study of adaptations induced by aerobic physical training in hypertensive hearts. Front Physiol. 2022;13:1–10. (PMID: 10.3389/fphys.2022.920196) ; Choi SY. The characteristics of electrocardiography findings in left ventricular remodeling patterns of hypertensive patients. Biomed Sci Lett. 2015;21:208–17. (PMID: 10.15616/BSL.2015.21.4.208) ; Pagan LU, Damatto RL, Gomes MJ, Lima ARR, Cezar MDM, Damatto FC, et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med. 2019;23:6504–7. (PMID: 31317657671416610.1111/jcmm.14530) ; Kemi O, Haram P, Loennechen J, Osnes J, Skomedal T, Wisloff U, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res. 2005;67:161–72. https://academic.oup.com/cardiovascres/article-lookup/doi/10.1016/j.cardiores.2005.03.010 . (PMID: 1594948010.1016/j.cardiores.2005.03.010) ; Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57. (PMID: 3237057210.1161/HYPERTENSIONAHA.120.15026) ; Al-Majed ARA, Assiri E, Khalil NY, Abdel-Aziz HA. Losartan: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2015;40:159–94. (PMID: 2605168610.1016/bs.podrm.2015.02.003) ; Maida KD, Gastaldi AC, de Paula Facioli T, de Araújo JE, de Souza HC. Physical training associated with enalapril but not to losartan, results in better cardiovascular autonomic effects. Auton Neurosci Basic Clin. 2017;203:33–40. https://doi.org/10.1016/j.autneu.2016.12.002 . (PMID: 10.1016/j.autneu.2016.12.002) ; Mowry FE, Peaden SC, Stern JE, Biancardi VC. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharm Res. 2021;174:105877 https://doi.org/10.1016/j.phrs.2021.105877 . (PMID: 10.1016/j.phrs.2021.105877) ; Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63:572–9. (PMID: 2434312010.1161/HYPERTENSIONAHA.113.01743) ; Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension. 1997;29:519–24. (PMID: 903915310.1161/01.HYP.29.1.519) ; Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: Novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol. 2016;594:1591–600. (PMID: 2658048410.1113/JP271584) ; Tomaz de Castro QJ, Araujo CM, Watai PY, de Castro e Silva SS, de Lima WG, Becker LK, et al. Effects of physical exercise combined with captopril or losartan on left ventricular hypertrophy of hypertensive rats. Clin Exp Hypertens. 2021;43:536–49. https://doi.org/10.1080/10641963.2021.1907399 . (PMID: 10.1080/10641963.2021.190739933870805) ; Gardim CB, Veiga AC, Aguilar BA, Philbois SV, Souza HCD. Effects of chronic cholinergic stimulation associated with aerobic physical training on cardiac morphofunctional and autonomic parameters in spontaneously hypertensive rats. Sci Rep. 2021;11:1–10. https://doi.org/10.1038/s41598-021-96505-2 . (PMID: 10.1038/s41598-021-96505-2) ; Gobatto CA, De Mello MAR, Sibuya CY, De Azevedo JRM, Dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:21–7. (PMID: 1167268010.1016/S1095-6433(01)00362-2) ; Felix ACS, Dutra SGV, Gastaldi AC, Bonfim PC, Vieira S, de Souza HCD. Physical training promotes similar effects to the blockade of angiotensin-converting enzyme on the cardiac morphology and function in old female rats subjected to premature ovarian failure. Exp Gerontol. 2018;109:90–8. https://linkinghub.elsevier.com/retrieve/pii/S053155651730027X . (PMID: 2840816010.1016/j.exger.2017.04.003) ; Dias CJ, Costa HA, Alves Dias-Filho CA, Ferreira AC, Rodrigues B, Irigoyen MC, et al. Carvacrol reduces blood pressure, arterial responsiveness and increases expression of MAS receptors in spontaneously hypertensive rats. Eur J Pharm. 2022;917:174717. (PMID: 10.1016/j.ejphar.2021.174717) ; Magder S. The meaning of blood pressure. Crit Care. 2018;22:257 https://ccforum.biomedcentral.com/articles/10.1186/s13054-018-2171-1 . (PMID: 30305136618045310.1186/s13054-018-2171-1) ; Sabbahi A, Arena R, Elokda A, Phillips SA. Exercise and hypertension: uncovering the mechanisms of vascular control. Prog Cardiovasc Dis. 2016;59:226–34. https://doi.org/10.1016/j.pcad.2016.09.006 . (PMID: 10.1016/j.pcad.2016.09.00627697533) ; Blanco JHD, Gastaldi AC, Gardim CB, Araujo JE, Simões MV, Oliveira LFL, et al. Chronic cholinergic stimulation promotes changes in cardiovascular autonomic control in spontaneously hypertensive rats. Auton Neurosci Basic Clin. 2015;193:97–103. https://doi.org/10.1016/j.autneu.2015.09.002 . (PMID: 10.1016/j.autneu.2015.09.002) ; De Rosa ML, Cardace P, Rossi M, Baiano A, De Cristofaro A. Comparative effects of chronic ACE inhibition and AT1 receptor blocked losartan on cardiac hypertrophy and renal function in hypertensive patients. J Hum Hypertens. 2002;16:133–40. (PMID: 1185077110.1038/sj.jhh.1001305) ; Tani S, Nagao K, Anazawa T, Kawamata H, Furuya S, Takahashi H, et al. Effects of enalapril and losartan in left ventricular remodeling after acute myocardial infarction: A possible mechanism of prevention of cardiac events by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in high-risk myocardial. Intern Med. 2009;48:877–82. (PMID: 1948335510.2169/internalmedicine.48.1948) ; Zhu YC, Zhu YZ, Lu N, Wang MJ, Wang YX, Yao T. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharm Physiol. 2003;30:911–8. (PMID: 10.1111/j.1440-1681.2003.03942.x) ; Wilson AJ, Wang VY, Sands GB, Young AA, Nash MP, LeGrice IJ. Increased cardiac work provides a link between systemic hypertension and heart failure. Physiol Rep. 2017;5:1–8. (PMID: 10.14814/phy2.13104) ; Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6. (PMID: 2480479110.1038/jhh.2014.36) ; Maskali F, Poussier S, Louis H, Boutley H, Lhuillier M, Thornton SN, et al. Assessment of the early stage of cardiac remodeling of spontaneously hypertensive heart failure rats using the quantitative 3-dimensional analysis provided by acipimox-enhanced FDG-PET. Int J Cardiovasc Imaging. 2014;30:449–56. (PMID: 2438485810.1007/s10554-013-0350-3) ; Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA. 1982;79:3310–4. (PMID: 621292934640510.1073/pnas.79.10.3310) ; Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407. https://doi.org/10.1038/s41569-018-0007-y . (PMID: 10.1038/s41569-018-0007-y29674714) ; Engel LE, de Souza FLA, Giometti IC, Okoshi K, Mariano TB, Ferreira NZ, et al. The high-intensity interval training mitigates the cardiac remodeling in spontaneously hypertensive rats. Life Sci. 2022;308:120959. (PMID: 3610876810.1016/j.lfs.2022.120959) ; Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function. J Echocardiogr. 2019;17:10–6. https://doi.org/10.1007/s12574-018-0405-5 . (PMID: 10.1007/s12574-018-0405-530390189) ; Dumesnil JG, Dion D, Yvorchuk K, Davies RA, Chan K. A new, simple and accurate method for determining ejection fraction by Doppler echocardiography. Can J Cardiol. 1995;11:1007–14. http://europepmc.org/abstract/MED/8542542 . (PMID: 8542542) ; Gohlke P, Linz W, Schölkens BA, Wiemer G, Unger T. Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension. 1996;28:397–402. https://www.ahajournals.org/doi/10.1161/01.HYP.28.3.397 . (PMID: 879482310.1161/01.HYP.28.3.397) ; Dickhout JG, Lee RMKW. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol Hear Circ Physiol. 1998;274:794–800. (PMID: 10.1152/ajpheart.1998.274.3.H794) ; Anishchenko AM, Aliev OI, Sidekhmenova AV, Shamanaev AY, Plotnikov MB. Dynamics of Blood Pressure Elevation and Endothelial Dysfunction in SHR Rats During the Development of Arterial Hypertension. Bull Exp Biol Med. 2015;159:591–3. http://link.springer.com/10.1007/s10517-015-3020-8 . (PMID: 2646803210.1007/s10517-015-3020-8) ; Dodd MS, Ball DR, Schroeder MA, Le Page LM, Atherton HJ, Heather LC, et al. In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res. 2012;95:69–76. https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvs164 . (PMID: 2259320010.1093/cvr/cvs164) ; Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, et al. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8. https://www.ahajournals.org/doi/10.1161/JAHA.118.010926 . ; Boe E, Smiseth OA, Storsten P, Andersen OS, Aalen J, Eriksen M, et al. Left ventricular end-systolic volume is a more sensitive marker of acute response to cardiac resynchronization therapy than contractility indices: insights from an experimental study. EP Eur. 2019;21:347–55. https://doi.org/10.1016/j.autneu.2013.04.003 . ; Rizzoni D, Porteri E, Piccoli A, Castellano M, Bettoni G, Muiesan ML, et al. Effects of losartan and enalapril on small artery structure in hypertensive rats. Hypertension. 1998;32:305–10. https://www.ahajournals.org/doi/10.1161/01.HYP.32.2.305 . (PMID: 971905910.1161/01.HYP.32.2.305) ; Baraldi D, Casali K, Fernandes RO, Campos C, Sartório C, Conzatti A, et al. The role of AT1-receptor blockade on reactive oxygen species and cardiac autonomic drive in experimental hyperthyroidism. Auton Neurosci Basic Clin. 2013;177:163–9. https://doi.org/10.1016/j.autneu.2013.04.003 . (PMID: 10.1016/j.autneu.2013.04.003) ; Liu YP, Lin YC, Lin CC, Tsai SH, Tung CS. Spectral analysis of cardiovascular oscillations in the 7-day regimen of losartan administration with and without cold stress. Chin J Physiol. 2022;65:171–8. (PMID: 3607356510.4103/0304-4920.354802) ; Petretta M, Spinelli L, Marciano F, Apicella C, Vicario MLE, Testa G, et al. Effects of losartan treatment on cardiac autonomic control during volume loading in patients with DCM. Am J Physiol Hear Circ Physiol. 2000;279:86–92. (PMID: 10.1152/ajpheart.2000.279.1.H86) ; Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–72. (PMID: 2328078910.1002/ana.23648) ; Mangiapane ML, Simpson JB. Subfornical Organ Lesions Reduce the Presor Effect of Systemic Angiotensin II. Neuroendocrinol. 1980;31:380–4. https://doi.org/10.1159/000123107 . (PMID: 10.1159/000123107) ; Kucuk M, Kaya M, Kalayci R, Cimen V, Kudat H, Arican N, et al. Effects of losartan on the blood-brain barrier permeability in long-term nitric oxide blockade-induced hypertensive rats. Life Sci. 2002;71:937–46. (PMID: 1208439010.1016/S0024-3205(02)01772-1) ; Kaya M, Kalayci R, Küçük M, Arican N, Elmas I, Kudat H, et al. Effect of losartan on the blood-brain barrier permeability in diabetic hypertensive rats. Life Sci. 2003;73:3235–44. (PMID: 1456152810.1016/j.lfs.2003.06.014) ; de Abreu SB, Lenhard A, Mehanna A, de Souza HCD, de Aguiar Correa FM, Hasser EM, et al. Role of paraventricular nucleus in exercise training-induced autonomic modulation in conscious rats. Auton Neurosci. 2009;148:28–35. https://doi.org/10.1016/j.autneu.2009.02.007 . (PMID: 10.1016/j.autneu.2009.02.00719297253) ; Mastelari RB, de Souza HCD, Lenhard A, Corrêa FMDA, Martins-pinge MC. Nitric oxide inhibition in paraventricular nucleus on cardiovascular and autonomic modulation after exercise training in unanesthetized rats. Brain Res. 2011;1375:68–76. https://doi.org/10.1016/j.brainres.2010.12.049 . (PMID: 10.1016/j.brainres.2010.12.04921172321) ; Schaefer ME, Allert JA, Adams HR, Laughlin MH. Adrenergic responsiveness and intrinsic sinoatrial automaticity of exercise-trained rats. Med Sci Sports Exerc. 1992;24:887–94. http://www.ncbi.nlm.nih.gov/pubmed/1406174 . (PMID: 140617410.1249/00005768-199208000-00010) ; Bahrainy S, Levy WC, Busey JM, Caldwell JH, Stratton JR. Exercise training bradycardia is largely explained by reduced intrinsic heart rate. Int J Cardiol. 2016;222:213–6. https://doi.org/10.1016/j.ijcard.2016.07.203 . (PMID: 10.1016/j.ijcard.2016.07.203274970975042852)
  • Contributed Indexing: Keywords: Aerobic physical training; Hypertension; Losartan; Sympathetic drive; Ventricular contractility
  • Substance Nomenclature: JMS50MPO89 (Losartan) ; 0 (Antihypertensive Agents)
  • Entry Date(s): Date Created: 20240228 Date Completed: 20240506 Latest Revision: 20240515
  • Update Code: 20240516

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -