Zum Hauptinhalt springen

Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells.

Sassmannshausen, J ; Bennink, S ; et al.
In: Molecular microbiology, Jg. 121 (2024-03-01), Heft 3, S. 431-452
academicJournal

Titel:
Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells.
Autor/in / Beteiligte Person: Sassmannshausen, J ; Bennink, S ; Distler, U ; Küchenhoff, J ; Minns, AM ; Lindner, SE ; Burda, PC ; Tenzer, S ; Gilberger, TW ; Pradel, G
Zeitschrift: Molecular microbiology, Jg. 121 (2024-03-01), Heft 3, S. 431-452
Veröffentlichung: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-, 2024
Medientyp: academicJournal
ISSN: 1365-2958 (electronic)
DOI: 10.1111/mmi.15125
Schlagwort:
  • Animals
  • Proteomics methods
  • Protozoan Proteins metabolism
  • Erythrocytes parasitology
  • Plasmodium falciparum metabolism
  • Malaria, Falciparum parasitology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Mol Microbiol] 2024 Mar; Vol. 121 (3), pp. 431-452. <i>Date of Electronic Publication: </i>2023 Jul 26.
  • MeSH Terms: Plasmodium falciparum* / metabolism ; Malaria, Falciparum* / parasitology ; Animals ; Proteomics / methods ; Protozoan Proteins / metabolism ; Erythrocytes / parasitology
  • References: Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T. et al. (1995) COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Molecular and Biochemical Parasitology, 74(2), 143-156. Available from: https://doi.org/10.1016/0166-6851(95)02491-3. ; Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S. et al. (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37. 4, 420-423. Available from: https://doi.org/10.1038/s41587-019-0036-z. ; Andreadaki, M., Hanssen, E., Deligianni, E., Claudet, C., Wengelnik, K., Mollard, V. et al. (2018) Sequential membrane rupture and vesiculation during Plasmodium berghei gametocyte egress from the red blood cell. Scientific Reports, 8(1), 3543. Available from: https://doi.org/10.1038/s41598-018-21801-3. ; Andreadaki, M., Pace, T., Grasso, F., Siden-Kiamos, I., Mochi, S., Picci, L. et al. (2020) Plasmodium berghei gamete egress protein is required for fertility of both genders. MicrobiologyOpen, 9(7), e1038. Available from: https://doi.org/10.1002/mbo3.1038. ; Annoura, T., van Schaijk, B.C.L., Ploemen, I.H.J., Sajid, M., Lin, J., Vos, M.W. et al. (2014) Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development. FASEB Journal, 28(5), 2158-2170. Available from: https://doi.org/10.1096/fj.13-241570. ; Arastu-Kapur, S., Ponder, E.L., Fonović, U.P., Yeoh, S., Yuan, F., Fonović, M. et al. (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nature Chemical Biology, 4(3), 203-213. Available from: https://doi.org/10.1038/nchembio.70. ; Arisue, N., Palacpac, N.M.Q., Tougan, T. & Horii, T. (2020) Characteristic features of the SERA multigene family in the malaria parasite. Parasites & Vectors, 13(1), 170. Available from: https://doi.org/10.1186/s13071-020-04044-y. ; Arumugam, T.U., Takeo, S., Yamasaki, T., Thonkukiatkul, A., Miura, K., Otsuki, H. et al. (2011) Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infection and Immunity, 79(11), 4523-4532. Available from: https://doi.org/10.1128/IAI.05412-11. ; Aurrecoechea, C., Brestelli, J., Brunk, B.P., Dommer, J., Fischer, S., Gajria, B. et al. (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Research, 37, D539-D543. Available from: https://doi.org/10.1093/nar/gkn814. ; Ayong, L., Pagnotti, G., Tobon, A.B. & Chakrabarti, D. (2007) Identification of Plasmodium falciparum family of SNAREs. Molecular and Biochemical Parasitology, 152(2), 113-122. Available from: https://doi.org/10.1016/j.molbiopara.2006.12.007. ; Baldi, D.L., Andrews, K.T., Waller, R.F., Roos, D.S., Howard, R.F., Crabb, B.S. et al. (2000) RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. The EMBO Journal, 19(11), 2435-2443. Available from: https://doi.org/10.1093/emboj/19.11.2435. ; Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M. & Goldberg, D.E. (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 990-995. Available from: https://doi.org/10.1073/pnas.022630099. ; Bargieri, D.Y., Thiberge, S., Tay, C.L., Carey, A.F., Rantz, A., Hischen, F. et al. (2016) Plasmodium merozoite TRAP family protein is essential for vacuole membrane disruption and gamete egress from erythrocytes. Cell Host & Microbe, 20(5), 618-630. Available from: https://doi.org/10.1016/j.chom.2016.10.015. ; Batinovic, S., McHugh, E., Chisholm, S.A., Matthews, K., Liu, B., Dumont, L. et al. (2017) An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nature Communications, 8, 16044. Available from: https://doi.org/10.1038/ncomms16044. ; Bennink, S., Kiesow, M.J. & Pradel, G. (2016) The development of malaria parasites in the mosquito midgut. Cellular Microbiology, 18(7), 905-918. Available from: https://doi.org/10.1111/cmi.12604. ; Bennink, S. & Pradel, G. (2021) Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Molecular and Biochemical Parasitology, 243, 111372. Available from: https://doi.org/10.1016/j.molbiopara.2021.111372. ; Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E. et al. (2017) A genetic system to study Plasmodium falciparum protein function. Nature Methods, 14(4), 450-456. Available from: https://doi.org/10.1038/nmeth.4223. ; Black, C.G., Wu, T., Wang, L., Topolska, A.E. & Coppel, R.L. (2005) MSP8 is a non-essential merozoite surface protein in Plasmodium falciparum. Molecular and Biochemical Parasitology, 144(1), 27-35. Available from: https://doi.org/10.1016/j.molbiopara.2005.06.010. ; Boysen, K.E. & Matuschewski, K. (2013) Inhibitor of cysteine proteases is critical for motility and infectivity of Plasmodium sporozoites. mBio, 4(6), e00874-13. Available from: https://doi.org/10.1128/mBio.00874-13. ; Branon, T.C., Bosch, J.A., Sanchez, A.D., Udeshi, N.D., Svinkina, T., Carr, S.A. et al. (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 36(9), 880-887. Available from: https://doi.org/10.1038/nbt.4201. ; Bruce, M.C., Carter, R.N., Nakamura, K., Aikawa, M. & Carter, R. (1994) Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16. Molecular and Biochemical Parasitology, 65(1), 11-22. Available from: https://doi.org/10.1016/0166-6851(94)90111-2. ; Charnaud, S.C., Dixon, M.W.A., Nie, C.Q., Chappell, L., Sanders, P.R., Nebl, T. et al. (2017) The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS ONE, 12(7), e0181656. Available from: https://doi.org/10.1371/journal.pone.0181656. ; Child, M.A., Harris, P.K., Collins, C.R., Withers-Martinez, C., Yeoh, S. & Blackman, M.J. (2013) Molecular determinants for subcellular trafficking of the malarial sheddase PfSUB2. Traffic, 14(10), 1053-1064. Available from: https://doi.org/10.1111/tra.12092. ; Collins, C.R., Hackett, F., Atid, J., Tan, M.S.Y. & Blackman, M.J. (2017) The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathogens, 13(7), e1006453. Available from: https://doi.org/10.1371/journal.ppat.1006453. ; Collins, C.R., Hackett, F., Howell, S.A., Snijders, A.P., Russell, M.R., Collinson, L.M. et al. (2020) The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife, 9, e61121. Available from: https://doi.org/10.7554/eLife.61121. ; Coombs, G.H., Goldberg, D.E., Klemba, M., Berry, C., Kay, J. & Mottram, J.C. (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends in Parasitology, 17(11), 532-537. Available from: https://doi.org/10.1016/s1471-4922(01)02037-2. ; Counihan, N.A., Chisholm, S.A., Bullen, H.E., Srivastava, A., Sanders, P.R., Jonsdottir, T.K. et al. (2017) Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife, 6, e23217. Available from: https://doi.org/10.7554/eLife.23217. ; Cowman, A.F., Berry, D. & Baum, J. (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. The Journal of Cell Biology, 198(6), 961-971. Available from: https://doi.org/10.1083/jcb.201206112. ; Cowman, A.F., Tonkin, C.J., Tham, W.-H. & Duraisingh, M.T. (2017) The molecular basis of erythrocyte invasion by malaria parasites. Cell Host & Microbe, 22(2), 232-245. Available from: https://doi.org/10.1016/j.chom.2017.07.003. ; Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N. & Mann, M. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513-2526. Available from: https://doi.org/10.1074/mcp.M113.031591. ; Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367-1372. Available from: https://doi.org/10.1038/nbt.1511. ; Curtidor, H., Ocampo, M., Tovar, D., López, R., García, J., Valbuena, J. et al. (2004) Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum-derived rhoptry-associated protein 1 peptides. Vaccine, 22(8), 1054-1062. Available from: https://doi.org/10.1016/j.vaccine.2003.07.019. ; da Silva, F.L., Dixon, M.W.A., Stack, C.M., Teuscher, F., Taran, E., Jones, M.K. et al. (2016) A Plasmodium falciparum S33 proline aminopeptidase is associated with changes in erythrocyte deformability. Experimental Parasitology, 169, 13-21. Available from: https://doi.org/10.1016/j.exppara.2016.06.013. ; de Koning-Ward, T.F., Gilson, P.R., Boddey, J.A., Rug, M., Smith, B.J., Papenfuss, A.T. et al. (2009) A newly discovered protein export machine in malaria parasites. Nature, 459(7249), 945-949. Available from: https://doi.org/10.1038/nature08104. ; de Koning-Ward, T.F., Olivieri, A., Bertuccini, L., Hood, A., Silvestrini, F., Charvalias, K. et al. (2008) The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum. Molecular Microbiology, 67(2), 278-290. Available from: https://doi.org/10.1111/j.1365-2958.2007.06039.x. ; Deligianni, E., Morgan, R.N., Bertuccini, L., Wirth, C.C., Silmon de Monerri, N.C., Spanos, L. et al. (2013) A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cellular Microbiology, 15(8), 1438-1455. Available from: https://doi.org/10.1111/cmi.12131. ; Dixon, M.W.A., Kenny, S., McMillan, P.J., Hanssen, E., Trenholme, K.R., Gardiner, D.L. et al. (2011) Genetic ablation of a Maurer's cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Molecular Microbiology, 81(4), 982-993. Available from: https://doi.org/10.1111/j.1365-2958.2011.07740.x. ; Dvorin, J.D. & Goldberg, D.E. (2022) Plasmodium egress across the parasite life cycle. Annual Review of Microbiology, 76, 67-90. Available from: https://doi.org/10.1146/annurev-micro-041320-020659. ; Eastman, R.T., Pattaradilokrat, S., Raj, D.K., Dixit, S., Deng, B., Miura, K. et al. (2013) A class of tricyclic compounds blocking malaria parasite oocyst development and transmission. Antimicrobial Agents and Chemotherapy, 57(1), 425-435. Available from: https://doi.org/10.1128/AAC.00920-12. ; Ecker, A., Bushell, E.S.C., Tewari, R. & Sinden, R.E. (2008) Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Molecular Microbiology, 70(1), 209-220. Available from: https://doi.org/10.1111/j.1365-2958.2008.06407.x. ; Eksi, S., Haile, Y., Furuya, T., Ma, L., Su, X. & Williamson, K.C. (2005) Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Molecular and Biochemical Parasitology, 143(1), 90-99. Available from: https://doi.org/10.1016/j.molbiopara.2005.05.010. ; Elsworth, B., Matthews, K., Nie, C.Q., Kalanon, M., Charnaud, S.C., Sanders, P.R. et al. (2014) PTEX is an essential nexus for protein export in malaria parasites. Nature, 511(7511), 587-591. Available from: https://doi.org/10.1038/nature13555. ; Fischer, K., Marti, T., Rick, B., Johnson, D., Benting, J., Baumeister, S. et al. (1998) Characterization and cloning of the gene encoding the vacuolar membrane protein EXP-2 from Plasmodium falciparum. Molecular and Biochemical Parasitology, 92(1), 47-57. Available from: https://doi.org/10.1016/s0166-6851(97)00224-7. ; Flieger, A., Frischknecht, F., Häcker, G., Hornef, M.W. & Pradel, G. (2018) Pathways of host cell exit by intracellular pathogens. Microbial Cell, 5(12), 525-544. Available from: https://doi.org/10.15698/mic2018.12.659. ; Furuya, T., Mu, J., Hayton, K., Liu, A., Duan, J., Nkrumah, L. et al. (2005) Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16813-16818. Available from: https://doi.org/10.1073/pnas.0501858102. ; Goldberg, D.E. (2005) Hemoglobin degradation. Current Topics in Microbiology and Immunology, 295, 275-291. Available from: https://doi.org/10.1007/3-540-29088-5_11. ; Goodman, C.D., Mollard, V., Louie, T., Holloway, G.A., Watson, K.G. & McFadden, G.I. (2014) Apicoplast acetyl Co-A carboxylase of the human malaria parasite is not targeted by cyclohexanedione herbicides. International Journal for Parasitology, 44(5), 285-289. Available from: https://doi.org/10.1016/j.ijpara.2014.01.007. ; Grasso, F., Fratini, F., Albanese, T.G., Mochi, S., Ciardo, M., Pace, T. et al. (2022) Identification and preliminary characterization of Plasmodium falciparum proteins secreted upon gamete formation. Scientific Reports, 12(1), 9592. Available from: https://doi.org/10.1038/s41598-022-13415-7. ; Grasso, F., Mochi, S., Fratini, F., Olivieri, A., Currà, C., Siden Kiamos, I. et al. (2020) A comprehensive gender-related secretome of Plasmodium berghei sexual stages. Molecular & Cellular Proteomics, 19(12), 1986-1997. Available from: https://doi.org/10.1074/mcp.RA120.002212. ; Hallée, S., Thériault, C., Gagnon, D., Kehrer, J., Frischknecht, F., Mair, G.R. et al. (2018) Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum. Cellular Microbiology, 20(8), e12843. Available from: https://doi.org/10.1111/cmi.12843. ; Hallgren, J., Tsirigos, K.D., Pedersen, M.D., Almagro Armenteros, J.J., Marcatili, P., Nielsen, H. et al. (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv Preprint. Available from: https://doi.org/10.1101/2022.04.08.487609. ; Hentzschel, F., Mitesser, V., Fraschka, S.A.-K., Krzikalla, D., Carrillo, E.H., Berkhout, B. et al. (2020) Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Research, 48(1), e2. Available from: https://doi.org/10.1093/nar/gkz927. ; Hinds, L., Green, J.L., Knuepfer, E., Grainger, M. & Holder, A.A. (2009) Novel putative glycosylphosphatidylinositol-anchored micronemal antigen of Plasmodium falciparum that binds to erythrocytes. Eukaryotic Cell, 8(12), 1869-1879. Available from: https://doi.org/10.1128/EC.00218-09. ; Hughes, C.S., Foehr, S., Garfield, D.A., Furlong, E.E., Steinmetz, L.M. & Krijgsveld, J. (2014) Ultrasensitive proteome analysis using paramagnetic bead technology. Molecular Systems Biology, 10(10), 757. Available from: https://doi.org/10.15252/msb.20145625. ; Ifediba, T. & Vanderberg, J.P. (1981) Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature, 294(5839), 364-366. Available from: https://doi.org/10.1038/294364a0. ; Ito, D., Schureck, M.A. & Desai, S.A. (2017) An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. eLife, 6, e23485. Available from: https://doi.org/10.7554/eLife.23485. ; Kadekoppala, M., Ogun, S.A., Howell, S., Gunaratne, R.S. & Holder, A.A. (2010) Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. Eukaryotic Cell, 9(7), 1064-1074. Available from: https://doi.org/10.1128/EC.00048-10. ; Kaneko, I., Iwanaga, S., Kato, T., Kobayashi, I. & Yuda, M. (2015) Genome-wide identification of the target genes of AP2-O, a Plasmodium AP2-family transcription factor. PLoS Pathogens, 11(5), e1004905. Available from: https://doi.org/10.1371/journal.ppat.1004905. ; Kariuki, M.M., Kiaira, J.K., Mulaa, F.K., Mwangi, J.K., Wasunna, M.K. & Martin, S.K. (1998) Plasmodium falciparum: purification of the various gametocyte developmental stages from in vitro-cultivated parasites. The American Journal of Tropical Medicine and Hygiene, 59(4), 505-508. Available from: https://doi.org/10.4269/ajtmh.1998.59.505. ; Kehrer, J., Frischknecht, F. & Mair, G.R. (2016) Proteomic analysis of the Plasmodium berghei gametocyte egressome and vesicular bioID of osmiophilic body proteins identifies merozoite TRAP-like protein (MTRAP) as an essential factor for parasite transmission. Molecular & Cellular Proteomics, 15(9), 2852-2862. Available from: https://doi.org/10.1074/mcp.M116.058263. ; Kehrer, J., Singer, M., Lemgruber, L., Silva, P.A.G.C., Frischknecht, F. & Mair, G.R. (2016) A putative small solute transporter is responsible for the secretion of G377 and TRAP-containing secretory vesicles during Plasmodium gamete egress and sporozoite motility. PLoS Pathogens, 12(7), e1005734. Available from: https://doi.org/10.1371/journal.ppat.1005734. ; Kenthirapalan, S., Tran, P.N., Kooij, T.W.A., Ridgway, M.C., Rauch, M., Brown, S.H.J. et al. (2020) Distinct adaptations of a gametocyte ABC transporter to murine and human Plasmodium parasites and its incompatibility in cross-species complementation. International Journal for Parasitology, 50(6-7), 511-522. Available from: https://doi.org/10.1016/j.ijpara.2020.03.009. ; Khan, S.M., Kroeze, H., Franke-Fayard, B. & Janse, C.J. (2013) Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database. Methods in Molecular Biology, 923, 139-150. Available from: https://doi.org/10.1007/978-1-62703-026-7_9. ; Khosh-Naucke, M., Becker, J., Mesén-Ramírez, P., Kiani, P., Birnbaum, J., Fröhlke, U. et al. (2018) Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. International Journal of Medical Microbiology, 308(1), 13-24. Available from: https://doi.org/10.1016/j.ijmm.2017.07.007. ; Klemba, M., Gluzman, I. & Goldberg, D.E. (2004) A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. The Journal of Biological Chemistry, 279(41), 43000-43007. Available from: https://doi.org/10.1074/jbc.M408123200. ; Kongkasuriyachai, D., Fujioka, H. & Kumar, N. (2004) Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption. Molecular and Biochemical Parasitology, 133(2), 275-285. Available from: https://doi.org/10.1016/j.molbiopara.2003.10.014. ; Kou, X., Zheng, W., Du, F., Liu, F., Wang, M., Fan, Q. et al. (2016) Characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine. Parasites & Vectors, 9, 190. Available from: https://doi.org/10.1186/s13071-016-1459-8. ; Kuehn, A. & Pradel, G. (2010) The coming-out of malaria gametocytes. Journal of Biomedicine & Biotechnology, 2010, 976827. Available from: https://doi.org/10.1155/2010/976827. ; Kuehn, A., Simon, N. & Pradel, G. (2010) Family members stick together: multi-protein complexes of malaria parasites. Medical Microbiology and Immunology, 199(3), 209-226. Available from: https://doi.org/10.1007/s00430-010-0157-y. ; Külzer, S., Gehde, N. & Przyborski, J.M. (2009) Return to sender: use of Plasmodium ER retrieval sequences to study protein transport in the infected erythrocyte and predict putative ER protein families. Parasitology Research, 104(6), 1535-1541. Available from: https://doi.org/10.1007/s00436-009-1397-x. ; Lal, K., Delves, M.J., Bromley, E., Wastling, J.M., Tomley, F.M. & Sinden, R.E. (2009) Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. International Journal for Parasitology, 39(7), 755-761. Available from: https://doi.org/10.1016/j.ijpara.2008.11.008. ; Lanfrancotti, A., Bertuccini, L., Silvestrini, F. & Alano, P. (2007) Plasmodium falciparum: mRNA co-expression and protein co-localisation of two gene products upregulated in early gametocytes. Experimental Parasitology, 116(4), 497-503. Available from: https://doi.org/10.1016/j.exppara.2007.01.021. ; Lasonder, E., Rijpma, S.R., van Schaijk, B.C.L., Hoeijmakers, W.A.M., Kensche, P.R., Gresnigt, M.S. et al. (2016) Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Research, 44(13), 6087-6101. Available from: https://doi.org/10.1093/nar/gkw536. ; Lehmann, C., Heitmann, A., Mishra, S., Burda, P.-C., Singer, M., Prado, M. et al. (2014) A cysteine protease inhibitor of Plasmodium berghei is essential for exo-erythrocytic development. PLoS Pathogens, 10(8), e1004336. Available from: https://doi.org/10.1371/journal.ppat.1004336. ; Lin, J.-W., Spaccapelo, R., Schwarzer, E., Sajid, M., Annoura, T., Deroost, K. et al. (2015) Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance. The Journal of Experimental Medicine, 212(6), 893-903. Available from: https://doi.org/10.1084/jem.20141731. ; López-Barragán, M.J., Lemieux, J., Quiñones, M., Williamson, K.C., Molina-Cruz, A., Cui, K. et al. (2011) Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics, 12, 587. Available from: https://doi.org/10.1186/1471-2164-12-587. ; Maier, A.G., Rug, M., O'Neill, M.T., Brown, M., Chakravorty, S., Szestak, T. et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell, 134(1), 48-61. Available from: https://doi.org/10.1016/j.cell.2008.04.051. ; Marin-Mogollon, C., van de Vegte-Bolmer, M., van Gemert, G.-J., van Pul, F.J.A., Ramesar, J., Othman, A.S. et al. (2018) The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission. Scientific Reports, 8(1), 14902. Available from: https://doi.org/10.1038/s41598-018-33236-x. ; Matz, J.M. & Matuschewski, K. (2018) An in silico down-scaling approach uncovers novel constituents of the Plasmodium-containing vacuole. Scientific Reports, 8(1), 14055. Available from: https://doi.org/10.1038/s41598-018-32471-6. ; Mbengue, A., Audiger, N., Vialla, E., Dubremetz, J.-F. & Braun-Breton, C. (2013) Novel Plasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites. Molecular Microbiology, 88(2), 425-442. Available from: https://doi.org/10.1111/mmi.12193. ; Mesén-Ramírez, P., Bergmann, B., Tran, T.T., Garten, M., Stäcker, J., Naranjo-Prado, I. et al. (2019) EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biology, 17(9), e3000473. Available from: https://doi.org/10.1371/journal.pbio.3000473. ; Mesén-Ramírez, P., Reinsch, F., Blancke Soares, A., Bergmann, B., Ullrich, A.-K., Tenzer, S. et al. (2016) Stable translocation intermediates jam global protein export in Plasmodium falciparum parasites and link the PTEX component EXP2 with translocation activity. PLoS Pathogens, 12(5), e1005618. Available from: https://doi.org/10.1371/journal.ppat.1005618. ; Molina-Franky, J., Patarroyo, M.E., Kalkum, M. & Patarroyo, M.A. (2022) The cellular and molecular interaction between erythrocytes and Plasmodium falciparum merozoites. Frontiers in Cellular and Infection Microbiology, 12, 816574. Available from: https://doi.org/10.3389/fcimb.2022.816574. ; Morahan, B.J., Strobel, C., Hasan, U., Czesny, B., Mantel, P.-Y., Marti, M. et al. (2011) Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. Eukaryotic Cell, 10(11), 1492-1503. Available from: https://doi.org/10.1128/EC.05155-11. ; Mukherjee, S., Nasamu, A.S., Rubiano, K.C. & Goldberg, D.E. (2023) Activation of the Plasmodium egress effector subtilisin-like protease 1 is mediated by plasmepsin X destruction of the prodomain. mBio, 14(2), e0067323. Available from: https://doi.org/10.1128/mbio.00673-23. ; Musabyimana, J.P., Distler, U., Sassmannshausen, J., Berks, C., Manti, J., Bennink, S. et al. (2022) Plasmodium falciparum S-Adenosylmethionine synthetase is essential for parasite survival through a complex interaction network with cytoplasmic and nuclear proteins. Microorganisms, 10(7), 1419. Available from: https://doi.org/10.3390/microorganisms10071419. ; Muthui, M.K., Takashima, E., Omondi, B.R., Kinya, C., Muasya, W.I., Nagaoka, H. et al. (2021) Characterization of naturally acquired immunity to a panel of antigens expressed in mature P. falciparum gametocytes. Frontiers in Cellular and Infection Microbiology, 11, 774537. Available from: https://doi.org/10.3389/fcimb.2021.774537. ; Nasamu, A.S., Glushakova, S., Russo, I., Vaupel, B., Oksman, A., Kim, A.S. et al. (2017) Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 358(6362), 518-522. Available from: https://doi.org/10.1126/science.aan1478. ; Nasamu, A.S., Polino, A.J., Istvan, E.S. & Goldberg, D.E. (2020) Malaria parasite plasmepsins: more than just plain old degradative pepsins. The Journal of Biological Chemistry, 295(25), 8425-8441. Available from: https://doi.org/10.1074/jbc.REV120.009309. ; Ngwa, C.J., Kiesow, M.J., Papst, O., Orchard, L.M., Filarsky, M., Rosinski, A.N. et al. (2017) Transcriptional profiling defines histone acetylation as a regulator of gene expression during human-to-mosquito transmission of the malaria parasite Plasmodium falciparum. Frontiers in Cellular and Infection Microbiology, 7, 320. Available from: https://doi.org/10.3389/fcimb.2017.00320. ; Ntumngia, F.B., Bouyou-Akotet, M.K., Uhlemann, A.-C., Mordmüller, B., Kremsner, P.G. & Kun, J.F.J. (2004) Characterisation of a tryptophan-rich Plasmodium falciparum antigen associated with merozoites. Molecular and Biochemical Parasitology, 137(2), 349-353. Available from: https://doi.org/10.1016/j.molbiopara.2004.06.008. ; Nunes, M.C., Okada, M., Scheidig-Benatar, C., Cooke, B.M. & Scherf, A. (2010) Plasmodium falciparum FIKK kinase members target distinct components of the erythrocyte membrane. PLoS ONE, 5(7), e11747. Available from: https://doi.org/10.1371/journal.pone.0011747. ; Okuda, S., Watanabe, Y., Moriya, Y., Kawano, S., Yamamoto, T., Matsumoto, M. et al. (2017) jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Research, 45(D1), D1107-D1111. Available from: https://doi.org/10.1093/nar/gkw1080. ; Olivieri, A., Bertuccini, L., Deligianni, E., Franke-Fayard, B., Currà, C., Siden-Kiamos, I. et al. (2015) Distinct properties of the egress-related osmiophilic bodies in male and female gametocytes of the rodent malaria parasite Plasmodium berghei. Cellular Microbiology, 17(3), 355-368. Available from: https://doi.org/10.1111/cmi.12370. ; Omara-Opyene, A.L., Moura, P.A., Sulsona, C.R., Bonilla, J.A., Yowell, C.A., Fujioka, H. et al. (2004) Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. The Journal of Biological Chemistry, 279(52), 54088-54096. Available from: https://doi.org/10.1074/jbc.M409605200. ; Pace, T., Grasso, F., Camarda, G., Suarez, C., Blackman, M.J., Ponzi, M. et al. (2019) The Plasmodium berghei serine protease PbSUB1 plays an important role in male gamete egress. Cellular Microbiology, 21(7), e13028. Available from: https://doi.org/10.1111/cmi.13028. ; Pandey, K.C., Singh, N., Arastu-Kapur, S., Bogyo, M. & Rosenthal, P.J. (2006) Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathogens, 2(11), e117. Available from: https://doi.org/10.1371/journal.ppat.0020117. ; Pasini, E.M., Braks, J.A., Fonager, J., Klop, O., Aime, E., Spaccapelo, R. et al. (2013) Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Molecular & Cellular Proteomics, 12(2), 426-448. Available from: https://doi.org/10.1074/mcp.M112.021238. ; Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785-786. Available from: https://doi.org/10.1038/nmeth.1701. ; Pino, P., Caldelari, R., Mukherjee, B., Vahokoski, J., Klages, N., Maco, B. et al. (2017) A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science, 358(6362), 522-528. Available from: https://doi.org/10.1126/science.aaf8675. ; Ponzi, M., Sidén-Kiamos, I., Bertuccini, L., Currà, C., Kroeze, H., Camarda, G. et al. (2009) Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cellular Microbiology, 11(8), 1272-1288. Available from: https://doi.org/10.1111/j.1462-5822.2009.01331.x. ; Pradel, G. (2007) Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology, 134, 1911-1929. Available from: https://doi.org/10.1017/S0031182007003381. ; Pradel, G., Hayton, K., Aravind, L., Iyer, L.M., Abrahamsen, M.S., Bonawitz, A. et al. (2004) A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. The Journal of Experimental Medicine, 199(11), 1533-1544. Available from: https://doi.org/10.1084/jem.20031274. ; Putrianti, E.D., Schmidt-Christensen, A., Arnold, I., Heussler, V.T., Matuschewski, K. & Silvie, O. (2010) The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite. Cellular Microbiology, 12(6), 725-739. Available from: https://doi.org/10.1111/j.1462-5822.2009.01419.x. ; Roling, L., Flammersfeld, A., Pradel, G. & Bennink, S. (2022) The WD40-protein PfWLP1 ensures stability of the PfCCp-based adhesion protein complex in Plasmodium falciparum gametocytes. Frontiers in Cellular and Infection Microbiology, 12, 942364. Available from: https://doi.org/10.3389/fcimb.2022.942364. ; Rosenthal, P.J. (2002) Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Current Opinion in Hematology, 9(2), 140-145. Available from: https://doi.org/10.1097/00062752-200203000-00010. ; Roux, K.J., Kim, D.I., Burke, B. & May, D.G. (2018) BioID: a screen for protein-protein interactions. Current Protocols in Protein Science, 91, 19.23.1-19.23.15. Available from: https://doi.org/10.1002/cpps.51. ; Ruecker, A., Shea, M., Hackett, F., Suarez, C., Hirst, E.M.A., Milutinovic, K. et al. (2012) Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. The Journal of Biological Chemistry, 287(45), 37949-37963. Available from: https://doi.org/10.1074/jbc.M112.400820. ; Sala, K.A., Nishiura, H., Upton, L.M., Zakutansky, S.E., Delves, M.J., Iyori, M. et al. (2015) The Plasmodium berghei sexual stage antigen PSOP12 induces anti-malarial transmission blocking immunity both in vivo and in vitro. Vaccine, 33(3), 437-445. Available from: https://doi.org/10.1016/j.vaccine.2014.11.038. ; Sanchez, C.P., Dave, A., Stein, W.D. & Lanzer, M. (2010) Transporters as mediators of drug resistance in Plasmodium falciparum. International Journal for Parasitology, 40(10), 1109-1118. Available from: https://doi.org/10.1016/j.ijpara.2010.04.001. ; Sanders, P.R., Gilson, P.R., Cantin, G.T., Greenbaum, D.C., Nebl, T., Carucci, D.J. et al. (2005) Distinct protein classes including novel merozoite surface antigens in raft-like membranes of Plasmodium falciparum. The Journal of Biological Chemistry, 280(48), 40169-40176. Available from: https://doi.org/10.1074/jbc.M509631200. ; Sanderson, T. & Rayner, J.C. (2017) PhenoPlasm: a database of disruption phenotypes for malaria parasite genes. Wellcome Open Research, 2, 45. Available from: https://doi.org/10.12688/wellcomeopenres.11896.2. ; Sassmannshausen, J., Pradel, G. & Bennink, S. (2020) Perforin-like proteins of apicomplexan parasites. Frontiers in Cellular and Infection Microbiology, 10, 578883. Available from: https://doi.org/10.3389/fcimb.2020.578883. ; Scherf, A., Carter, R., Petersen, C., Alano, P., Nelson, R., Aikawa, M. et al. (1992) Gene inactivation of Pf11-1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte-specific protein with a potential role in gametogenesis. The EMBO Journal, 11(6), 2293-2301. Available from: https://doi.org/10.1002/j.1460-2075.1992.tb05288.x. ; Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676-682. Available from: https://doi.org/10.1038/nmeth.2019. ; Scholz, S.M., Simon, N., Lavazec, C., Dude, M.-A., Templeton, T.J. & Pradel, G. (2008) PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. International Journal for Parasitology, 38(3-4), 327-340. Available from: https://doi.org/10.1016/j.ijpara.2007.08.009. ; Schwach, F., Bushell, E., Gomes, A.R., Anar, B., Girling, G., Herd, C. et al. (2015) PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Research, 43, D1176-D1182. Available from: https://doi.org/10.1093/nar/gku1143. ; Severini, C., Silvestrini, F., Sannella, A., Barca, S., Gradoni, L. & Alano, P. (1999) The production of the osmiophilic body protein Pfg377 is associated with stage of maturation and sex in Plasmodium falciparum gametocytes. Molecular and Biochemical Parasitology, 100(2), 247-252. Available from: https://doi.org/10.1016/s0166-6851(99)00050-x. ; Sherling, E.S., Knuepfer, E., Brzostowski, J.A., Miller, L.H., Blackman, M.J. & van Ooij, C. (2017) The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. eLife, 6, e23239. Available from: https://doi.org/10.7554/eLife.23239. ; Siddiqui, G., Proellochs, N.I. & Cooke, B.M. (2020) Identification of essential exported Plasmodium falciparum protein kinases in malaria-infected red blood cells. British Journal of Haematology, 188(5), 774-783. Available from: https://doi.org/10.1111/bjh.16219. ; Sielaff, M., Kuharev, J., Bohn, T., Hahlbrock, J., Bopp, T., Tenzer, S. et al. (2017) Evaluation of FASP, SP3, and iST protocols for proteomic sample preparation in the low microgram range. Journal of Proteome Research, 16(11), 4060-4072. Available from: https://doi.org/10.1021/acs.jproteome.7b00433. ; Sijwali, P.S., Koo, J., Singh, N. & Rosenthal, P.J. (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Molecular and Biochemical Parasitology, 150(1), 96-106. Available from: https://doi.org/10.1016/j.molbiopara.2006.06.013. ; Silmon de Monerri, N.C., Flynn, H.R., Campos, M.G., Hackett, F., Koussis, K., Withers-Martinez, C. et al. (2011) Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infection and Immunity, 79(3), 1086-1097. Available from: https://doi.org/10.1128/IAI.00902-10. ; Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Di Giulio, E., Bultrini, E., Picci, L. et al. (2005) Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology, 143(1), 100-110. Available from: https://doi.org/10.1016/j.molbiopara.2005.04.015. ; Silvestrini, F., Lasonder, E., Olivieri, A., Camarda, G., van Schaijk, B., Sanchez, M. et al. (2010) Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Molecular & Cellular Proteomics, 9(7), 1437-1448. Available from: https://doi.org/10.1074/mcp.M900479-MCP200. ; Simmons, D., Woollett, G., Bergin-Cartwright, M., Kay, D. & Scaife, J. (1987) A malaria protein exported into a new compartment within the host erythrocyte. The EMBO Journal, 6(2), 485-491. Available from: https://doi.org/10.1002/j.1460-2075.1987.tb04779.x. ; Simon, N., Kuehn, A., Williamson, K.C. & Pradel, G. (2016) Adhesion protein complexes of malaria gametocytes assemble following parasite transmission to the mosquito. Parasitology International, 65(1), 27-30. Available from: https://doi.org/10.1016/j.parint.2015.09.007. ; Simon, N., Scholz, S.M., Moreira, C.K., Templeton, T.J., Kuehn, A., Dude, M.-A. et al. (2009) Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. The Journal of Biological Chemistry, 284(21), 14537-14546. Available from: https://doi.org/10.1074/jbc.M808472200. ; Sinden, R.E. (1982) Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology, 84(1), 1-11. Available from: https://doi.org/10.1017/s003118200005160x. ; Siqueira-Neto, J.L., Debnath, A., McCall, L.-I., Bernatchez, J.A., Ndao, M., Reed, S.L. et al. (2018) Cysteine proteases in protozoan parasites. PLoS Neglected Tropical Diseases, 12(8), e0006512. Available from: https://doi.org/10.1371/journal.pntd.0006512. ; Slavic, K., Straschil, U., Reininger, L., Doerig, C., Morin, C., Tewari, R. et al. (2010) Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Molecular Microbiology, 75(6), 1402-1413. Available from: https://doi.org/10.1111/j.1365-2958.2010.07060.x. ; Sologub, L., Kuehn, A., Kern, S., Przyborski, J., Schillig, R. & Pradel, G. (2011) Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito. Cellular Microbiology, 13(6), 897-912. Available from: https://doi.org/10.1111/j.1462-5822.2011.01588.x. ; Spaccapelo, R., Janse, C.J., Caterbi, S., Franke-Fayard, B., Bonilla, J.A., Syphard, L.M. et al. (2010) Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. The American Journal of Pathology, 176(1), 205-217. Available from: https://doi.org/10.2353/ajpath.2010.090504. ; Spycher, C., Rug, M., Pachlatko, E., Hanssen, E., Ferguson, D., Cowman, A.F. et al. (2008) The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Molecular Microbiology, 68(5), 1300-1314. Available from: https://doi.org/10.1111/j.1365-2958.2008.06235.x. ; Stallmach, R., Kavishwar, M., Withers-Martinez, C., Hackett, F., Collins, C.R., Howell, S.A. et al. (2015) Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Molecular Microbiology, 96(2), 368-387. Available from: https://doi.org/10.1111/mmi.12941. ; Suárez-Cortés, P., Sharma, V., Bertuccini, L., Costa, G., Bannerman, N.-L., Sannella, A.R. et al. (2016) Comparative proteomics and functional analysis reveal a role of Plasmodium falciparum osmiophilic bodies in malaria parasite transmission. Molecular & Cellular Proteomics, 15(10), 3243-3255. Available from: https://doi.org/10.1074/mcp.M116.060681. ; Suaréz-Cortés, P., Silvestrini, F. & Alano, P. (2014) A fast, non-invasive, quantitative staining protocol provides insights in Plasmodium falciparum gamete egress and in the role of osmiophilic bodies. Malaria Journal, 13, 389. Available from: https://doi.org/10.1186/1475-2875-13-389. ; Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J. et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613. Available from: https://doi.org/10.1093/nar/gky1131. ; Tachibana, M., Iriko, H., Baba, M., Torii, M. & Ishino, T. (2021) PSOP1, putative secreted ookinete protein 1, is localized to the micronemes of Plasmodium yoelii and P. berghei ookinetes. Parasitology International, 84, 102407. Available from: https://doi.org/10.1016/j.parint.2021.102407. ; Tachibana, M., Ishino, T., Tsuboi, T. & Torii, M. (2018) The Plasmodium yoelii microgamete surface antigen (PyMiGS) induces anti-malarial transmission blocking immunity that reduces microgamete motility/release from activated male gametocytes. Vaccine, 36(49), 7463-7471. Available from: https://doi.org/10.1016/j.vaccine.2018.10.067. ; Talman, A.M., Lacroix, C., Marques, S.R., Blagborough, A.M., Carzaniga, R., Ménard, R. et al. (2011) PbGEST mediates malaria transmission to both mosquito and vertebrate host. Molecular Microbiology, 82(2), 462-474. Available from: https://doi.org/10.1111/j.1365-2958.2011.07823.x. ; Tan, M.S.Y. & Blackman, M.J. (2021) Malaria parasite egress at a glance. Journal of Cell Science, 134(5), jcs257345. Available from: https://doi.org/10.1242/jcs.257345. ; Tan, M.S.Y., Koussis, K., Withers-Martinez, C., Howell, S.A., Thomas, J.A., Hackett, F. et al. (2021) Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. The EMBO Journal, 40(11), e107226. Available from: https://doi.org/10.15252/embj.2020107226. ; Tanaka, T.Q., Deu, E., Molina-Cruz, A., Ashburne, M.J., Ali, O., Suri, A. et al. (2013) Plasmodium dipeptidyl aminopeptidases as malaria transmission-blocking drug targets. Antimicrobial Agents and Chemotherapy, 57(10), 4645-4652. Available from: https://doi.org/10.1128/AAC.02495-12. ; Thomas, J.A., Tan, M.S.Y., Bisson, C., Borg, A., Umrekar, T.R., Hackett, F. et al. (2018) A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nature Microbiology, 3(4), 447-455. Available from: https://doi.org/10.1038/s41564-018-0111-0. ; Thumuluri, V., Almagro Armenteros, J.J., Johansen, A.R., Nielsen, H. & Winther, O. (2022) DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research, 50, W228-W234. Available from: https://doi.org/10.1093/nar/gkac278. ; Tran, P.N., Brown, S.H.J., Mitchell, T.W., Matuschewski, K., McMillan, P.J., Kirk, K. et al. (2014) A female gametocyte-specific ABC transporter plays a role in lipid metabolism in the malaria parasite. Nature Communications, 5, 4773. Available from: https://doi.org/10.1038/ncomms5773. ; Trenholme, K.R., Brown, C.L., Skinner-Adams, T.S., Stack, C., Lowther, J., To, J. et al. (2010) Aminopeptidases of malaria parasites: new targets for chemotherapy. Infectious Disorders Drug Targets, 10(3), 217-225. Available from: https://doi.org/10.2174/187152610791163363. ; Uzureau, P., Barale, J.-C., Janse, C.J., Waters, A.P. & Breton, C.B. (2004) Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events. Cellular Microbiology, 6(1), 65-78. Available from: https://doi.org/10.1046/j.1462-5822.2003.00343.x. ; van Dijk, M.R., Janse, C.J., Thompson, J., Waters, A.P., Braks, J.A., Dodemont, H.J. et al. (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell, 104(1), 153-164. Available from: https://doi.org/10.1016/s0092-8674(01)00199-4. ; Vincensini, L., Fall, G., Berry, L., Blisnick, T. & Braun Breton, C. (2008) The RhopH complex is transferred to the host cell cytoplasm following red blood cell invasion by Plasmodium falciparum. Molecular and Biochemical Parasitology, 160(2), 81-89. Available from: https://doi.org/10.1016/j.molbiopara.2008.04.002. ; Vizcaíno, J.A., Côté, R.G., Csordas, A., Dianes, J.A., Fabregat, A., Foster, J.M. et al. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research, 41, D1063-D1069. Available from: https://doi.org/10.1093/nar/gks1262. ; Warncke, J.D., Passecker, A., Kipfer, E., Brand, F., Pérez-Martínez, L., Proellochs, N.I. et al. (2020) The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cellular Microbiology, 22(2), e13123. Available from: https://doi.org/10.1111/cmi.13123. ; Wass, M.N., Stanway, R., Blagborough, A.M., Lal, K., Prieto, J.H., Raine, D. et al. (2012) Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology, 139(9), 1131-1145. Available from: https://doi.org/10.1017/S0031182012000133. ; Williamson, K.C., Keister, D.B., Muratova, O. & Kaslow, D.C. (1995) Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Molecular and Biochemical Parasitology, 75(1), 33-42. Available from: https://doi.org/10.1016/0166-6851(95)02507-3. ; Wirth, C.C., Glushakova, S., Scheuermayer, M., Repnik, U., Garg, S., Schaack, D. et al. (2014) Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cellular Microbiology, 16(5), 709-733. Available from: https://doi.org/10.1111/cmi.12288. ; Wirth, C.C. & Pradel, G. (2012) Molecular mechanisms of host cell egress by malaria parasites. International Journal of Medical Microbiology, 302, 4-5. Available from: https://doi.org/10.1016/j.ijmm.2012.07.003. ; World Health Organization. (2022) WHO word malaria report 2022. Geneva, Switzerland: WHO. ; Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A. et al. (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell, 131(6), 1072-1083. Available from: https://doi.org/10.1016/j.cell.2007.10.049. ; Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R. et al. (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science, 360, 6388. Available from: https://doi.org/10.1126/science.aap7847.
  • Grant Information: TE599/9-1 Deutsche Forschungsgemeinschaft; GI312/11-1 Deutsche Forschungsgemeinschaft; PR905/19-1 Deutsche Forschungsgemeinschaft; PR905/15-1 Deutsche Forschungsgemeinschaft
  • Contributed Indexing: Keywords: Plasmodium falciparum; egress; gametocyte; malaria; red blood cell; vesicle
  • Substance Nomenclature: 0 (Protozoan Proteins)
  • Entry Date(s): Date Created: 20230726 Date Completed: 20240312 Latest Revision: 20240415
  • Update Code: 20240415

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -