Zum Hauptinhalt springen

Essential elements of radical pair magnetosensitivity in Drosophila.

Bradlaugh, AA ; Fedele, G ; et al.
In: Nature, Jg. 615 (2023-03-01), Heft 7950, S. 111-116
Online academicJournal

Titel:
Essential elements of radical pair magnetosensitivity in Drosophila.
Autor/in / Beteiligte Person: Bradlaugh, AA ; Fedele, G ; Munro, AL ; Hansen, CN ; Hares, JM ; Patel, S ; Kyriacou, CP ; Jones, AR ; Rosato, E ; Baines, RA
Link:
Zeitschrift: Nature, Jg. 615 (2023-03-01), Heft 7950, S. 111-116
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-05735-z
Schlagwort:
  • Animals
  • Flavin-Adenine Dinucleotide metabolism
  • Tryptophan metabolism
  • Electrophysiology
  • Behavior, Animal
  • Single-Cell Analysis
  • Neurons cytology
  • Neurons metabolism
  • Cryptochromes chemistry
  • Cryptochromes metabolism
  • Drosophila melanogaster chemistry
  • Drosophila melanogaster cytology
  • Drosophila melanogaster metabolism
  • Drosophila melanogaster physiology
  • Magnetic Fields
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2023 Mar; Vol. 615 (7950), pp. 111-116. <i>Date of Electronic Publication: </i>2023 Feb 22.
  • MeSH Terms: Cryptochromes* / chemistry ; Cryptochromes* / metabolism ; Drosophila melanogaster* / chemistry ; Drosophila melanogaster* / cytology ; Drosophila melanogaster* / metabolism ; Drosophila melanogaster* / physiology ; Magnetic Fields* ; Animals ; Flavin-Adenine Dinucleotide / metabolism ; Tryptophan / metabolism ; Electrophysiology ; Behavior, Animal ; Single-Cell Analysis ; Neurons / cytology ; Neurons / metabolism
  • Comments: Erratum in: Nature. 2023 Mar;615(7954):E27. (PMID: 36922600)
  • References: Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005). (PMID: 10.1007/s00359-005-0627-7) ; Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016). (PMID: 2721693610.1146/annurev-biophys-032116-094545) ; Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014). (PMID: 25473952425608610.1371/journal.pgen.1004804) ; Giachello, C. N. G., Scrutton, N. S., Jones, A. R. & Baines, R. A. Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome. J. Neurosci. 36, 10742–10749 (2016). (PMID: 27798129508300510.1523/JNEUROSCI.2140-16.2016) ; Schwarze, S. et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55 (2016). (PMID: 27047356480184810.3389/fnbeh.2016.00055) ; Günther, A. et al. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223 (2018). (PMID: 2930755410.1016/j.cub.2017.12.003) ; Antill, L. M. & Woodward, J. R. Flavin adenine dinucleotide photochemistry is magnetic field sensitive at physiological pH. J. Phys. Chem. Lett. 9, 2691–2696 (2018). (PMID: 2972409410.1021/acs.jpclett.8b01088) ; Wan, G., Hayden, A. N., Iiams, S. E. & Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat. Commun. 12, 771 (2021). (PMID: 33536422785940810.1038/s41467-021-21002-z) ; Kyriacou, C. P. & Rosato, E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front. Physiol. 13, 1522 (2022). (PMID: 10.3389/fphys.2022.928416) ; Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000). (PMID: 10653784130067410.1016/S0006-3495(00)76629-X) ; Ritz, T. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457 (2009). (PMID: 19383488271830110.1016/j.bpj.2008.11.072) ; Kao, Y. T. et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 130, 7695–7701 (2008). (PMID: 18500802266110710.1021/ja801152h) ; Immeln, D., Weigel, A., Kottke, T. & Pérez Lustres, J. L. Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy. J. Am. Chem. Soc. 134, 12536–12546 (2012). (PMID: 2277550510.1021/ja302121z) ; Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009). (PMID: 19129499262670710.1073/pnas.0711968106) ; Giovani, B., Byrdin, M., Ahmad, M. & Brettel, K. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10, 489–490 (2003). (PMID: 1273068810.1038/nsb933) ; Rosato, E. et al. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Biol. 11, 909–917 (2001). (PMID: 1144876710.1016/S0960-9822(01)00259-7) ; Dissel, S. et al. A constitutively active cryptochrome in Drosophila melanogaster. Nat. Neurosci. 7, 834–840 (2004). (PMID: 1525858410.1038/nn1285) ; Peschel, N., Chen, K. F., Szabo, G. & Stanewsky, R. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 19, 241–247 (2009). (PMID: 1918549210.1016/j.cub.2008.12.042) ; Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480, 396–399 (2011). (PMID: 22080955324069910.1038/nature10618) ; Levy, C. et al. Updated structure of Drosophila cryptochrome. Nature 495, 396–399 (2013). (PMID: 10.1038/nature11995) ; Ye, F. et al. An unexpected INAD PDZ tandem-mediated plcβ binding in Drosophila photo receptors. eLife 7, e41848 (2018). (PMID: 30526850630035210.7554/eLife.41848) ; Mazzotta, G. M. et al. Calmodulin enhances cryptochrome binding to INAD in Drosophila photoreceptors. Front. Mol. Neurosci. 11, 280 (2018). ; Müller, P., Brettel, K., Grama, L., Nyitrai, M. & Lukacs, A. Photochemistry of wild-type and N378D mutant E. coli DNA photolyase with oxidized FAD cofactor studied by transient absorption spectroscopy. ChemPhysChem 17, 1329–1340 (2016). (PMID: 2685290310.1002/cphc.201501077) ; Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016). (PMID: 27463133496839610.1016/j.bpj.2016.06.009) ; Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018). (PMID: 29581265589945410.1073/pnas.1719376115) ; Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010). (PMID: 20098414282060710.1038/nature08719) ; Baik, L. S. et al. Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting. Proc. Natl Acad. Sci. USA 116, 23339–23344 (2019). (PMID: 31659046685931410.1073/pnas.1905023116) ; Biskup, T. et al. Variable electron transfer pathways in an amphibian cryptochrome tryptophan versus tyrosine-based radical pairs. J. Biol. Chem. 288, 9249–9260 (2013). (PMID: 23430261361099610.1074/jbc.M112.417725) ; Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813 (2009). (PMID: 19527640271204310.1016/j.bpj.2009.03.048) ; Wiltschko, R., Ahmad, M., Nießner, C., Gehring, D. & Wiltschko, W. Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J. R. Soc. Interface 13, 20151010 (2016). (PMID: 27146685489225410.1098/rsif.2015.1010) ; Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989). (PMID: 10.1021/cr00091a003) ; Woodward, J. R. Radical pairs in solution. Progress in Reaction Kinetics and Mechanism 27, 165–207 (2002). ; Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011). (PMID: 2169470410.1038/ncomms1364) ; Miura, T., Maeda, K. & Arai, T. Effect of Coulomb interaction on the dynamics of the radical pair in the system of flavin mononucleotide and hen egg-white lysozyme (HEWL) studied by a magnetic field effect. J. Phys. Chem. B 107, 6474–6478 (2003). (PMID: 10.1021/jp034068n) ; Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394–1405 (2013). (PMID: 2374684910.1016/j.cell.2013.05.011) ; Shi, Z., Olson, C. A. & Kallenbach, N. R. Cation-π interaction in model α-helical peptides. J. Am. Chem. Soc. 124, 3284–3291 (2002). (PMID: 1191641210.1021/ja0174938) ; Ikeya, N. & Woodward, J. R. Cellular autofluorescence is magnetic field sensitive. Proc. Natl Acad. Sci. USA 118, e2018043118 (2021). (PMID: 33397812782640110.1073/pnas.2018043118) ; Murakami, M., Maeda, K. & Arai, T. Structure and kinetics of the intermediate biradicals generated from intramolecular electron transfer reaction of FAD studied by an action spectrum of the magnetic field effect. Chem. Phys. Lett. 362, 123–129 (2002). (PMID: 10.1016/S0009-2614(02)01046-1) ; Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J. & Timmel, C. R. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004). (PMID: 1522503610.1021/ja048220q) ; Kowalczyk, R. M., Schleicher, E., Bittl, R. & Weber, S. The photoinduced triplet of flavins and its protonation states. J. Am. Chem. Soc. 126, 11393–11399 (2004). (PMID: 1535512310.1021/ja049554i) ; Timmel, C. R. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus https://doi.org/10.1098/rsfs.2013.0037 (2013). ; Hemsley, M. J. et al. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531–537 (2007). (PMID: 1730622510.1016/j.bbrc.2007.01.189) ; Zito, K., Fetter, R. D., Goodman, C. S. & Isacoff, E. Y. Synaptic clustering of Fasciclin II and Shaker: essential targeting sequences and role of dig. Neuron 19, 1007–1016 (1997). (PMID: 939051510.1016/S0896-6273(00)80393-1) ; Thomas, U. et al. Synaptic targeting and localization of Discs-large is a stepwise process controlled by different domains of the protein. Curr. Biol. 10, 1108–1117 (2000). (PMID: 10996791465823110.1016/S0960-9822(00)00696-5) ; Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304, 1503–1506 (2004). (PMID: 1517880110.1126/science.1096973) ; Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021). (PMID: 3416305610.1038/s41586-021-03618-9) ; Fogle, K. J. et al. Cryptochrome-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proc. Natl Acad. Sci. USA 112, 2245–2250 (2015). (PMID: 25646452434311610.1073/pnas.1416586112) ; Pooam, M. et al. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249, 319–332 (2019). (PMID: 3019453410.1007/s00425-018-3002-y) ; Hammad, M. et al. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 19, 341–352 (2020). (PMID: 3206519210.1039/c9pp00469f) ; Netušil, R. et al. Cryptochrome-dependent magnetoreception in heteropteran insect continues even after 24 hours in darkness. J. Exp. Biol. 224, jeb243000 (2021). (PMID: 3447787610.1242/jeb.243000) ; Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat. Genet. 31, 349–353 (2002). ; Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014). (PMID: 2501958610.1038/ncomms5391) ; Bae, J. E. et al. Positive geotactic behaviors induced by geomagnetic field in Drosophilia. Mol. Brain 9, 55 (2016). (PMID: 27192976487080210.1186/s13041-016-0235-1) ; Oh, I. T. et al. Behavioral evidence for geomagnetic imprinting and transgenerational inheritance in fruit flies. Proc. Natl Acad. Sci. USA 117, 1216–1222 (2020). (PMID: 3188900110.1073/pnas.1914106117) ; Kyriacou, C. P. & Rosato, E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front. Physiol. 13, 928416 (2022). (PMID: 36035470939941210.3389/fphys.2022.928416) ; Dolezelova, E., Dolezel, D. & Hall, J. C. Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177, 329–345 (2007). (PMID: 17720919201367910.1534/genetics.107.076513) ; Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008). (PMID: 18641630255996410.1038/nature07183) ; Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993). (PMID: 822326810.1242/dev.118.2.401) ; Baines, R. A. & Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673–4683 (1998). (PMID: 9614242679269910.1523/JNEUROSCI.18-12-04673.1998) ; Delfino, L. et al. Visualization of mutant aggregates from clock neurons by agarose gel electrophoresis (AGERA) in Drosophila melanogaster. Methods Mol. Biol. 2482, 373–383 (2022). (PMID: 3561044010.1007/978-1-0716-2249-0_25)
  • Grant Information: United Kingdom WT_ Wellcome Trust; 087742/Z/08/Z United Kingdom WT_ Wellcome Trust
  • Substance Nomenclature: 0 (Cryptochromes) ; 146-14-5 (Flavin-Adenine Dinucleotide) ; 8DUH1N11BX (Tryptophan) ; 0 (cry protein, Drosophila)
  • Entry Date(s): Date Created: 20230222 Date Completed: 20230316 Latest Revision: 20240214
  • Update Code: 20240214
  • PubMed Central ID: PMC9977682

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -