Zum Hauptinhalt springen

ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge's disease.

Azad, P ; Caldwell, AB ; et al.
In: Experimental & molecular medicine, Jg. 54 (2022-06-01), Heft 6, S. 777-787
academicJournal

Titel:
ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge's disease.
Autor/in / Beteiligte Person: Azad, P ; Caldwell, AB ; Ramachandran, S ; Spann, NJ ; Akbari, A ; Villafuerte, FC ; Bermudez, D ; Zhao, H ; Poulsen, O ; Zhou, D ; Bafna, V ; Subramaniam, S ; Haddad, GG
Zeitschrift: Experimental & molecular medicine, Jg. 54 (2022-06-01), Heft 6, S. 777-787
Veröffentlichung: Jan. 2013- : New York : Nature Publishing Group ; <i>Original Publication</i>: Seoul : Korean Society of Medical Biochemistry and Molecular Biology, 1996-, 2022
Medientyp: academicJournal
ISSN: 2092-6413 (electronic)
DOI: 10.1038/s12276-022-00769-1
Schlagwort:
  • Chromatin genetics
  • Chromatin metabolism
  • Chronic Disease
  • Erythropoiesis genetics
  • Humans
  • Hypoxia genetics
  • Hypoxia metabolism
  • Tumor Suppressor Protein p53 genetics
  • Altitude Sickness genetics
  • Altitude Sickness metabolism
  • DNA-Binding Proteins genetics
  • DNA-Binding Proteins metabolism
  • Transcription Factors genetics
  • Transcription Factors metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [Exp Mol Med] 2022 Jun; Vol. 54 (6), pp. 777-787. <i>Date of Electronic Publication: </i>2022 Jun 07.
  • MeSH Terms: Altitude Sickness* / genetics ; Altitude Sickness* / metabolism ; DNA-Binding Proteins* / genetics ; DNA-Binding Proteins* / metabolism ; Transcription Factors* / genetics ; Transcription Factors* / metabolism ; Chromatin / genetics ; Chromatin / metabolism ; Chronic Disease ; Erythropoiesis / genetics ; Humans ; Hypoxia / genetics ; Hypoxia / metabolism ; Tumor Suppressor Protein p53 / genetics
  • References: Azad, P. et al. Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge’s disease. J. Exp. Med. 213, 2729–2744 (2016). (PMID: 27821551511001310.1084/jem.20151920) ; Monge, C. C. & Whittembury, J. Chronic mountain-sickness. Johns. Hopkins Med. J. 139, 87–89 (1976). (PMID: 1011412) ; Stobdan, T. et al. New insights into the genetic basis of Monge’s disease and adaptation to high-altitude. Mol. Biol. Evol. 34, 3154–3168 (2017). (PMID: 29029226585079710.1093/molbev/msx239) ; Villafuerte, F. C. & Corante, N. Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High. Alt. Med. Biol. 17, 61–69 (2016). (PMID: 27218284491350410.1089/ham.2016.0031) ; Zhou, D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 452–462 (2013). (PMID: 23954164376992510.1016/j.ajhg.2013.07.011) ; Azad, P. et al. High-altitude adaptation in humans: From genomics to integrative physiology. J. Mol. Med. 95, 1269–1282 (2017). (PMID: 2895195010.1007/s00109-017-1584-7) ; Beall, C. M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr. Comp. Biol. 46, 18–24 (2006). (PMID: 2167271910.1093/icb/icj004) ; Bigham, A. et al. Identifying signatures of natural selection in tibetan and andean populations using dense genome scan data. Plos Genet. 6, e1001116 (2010). (PMID: 20838600293653610.1371/journal.pgen.1001116) ; Dainiak, N., Spielvogel, H., Sorba, S. & Cudkowicz, L. Erythropoietin and the polycythemia of high-altitude dwellers. Adv. Exp. Med. Biol. 271, 17–21 (1989). (PMID: 248628310.1007/978-1-4613-0623-8_3) ; Naeije, R. & Vanderpool, R. Pulmonary hypertension and chronic mountain sickness. High. Alt. Med. Biol. 14, 117–125 (2013). (PMID: 2379573110.1089/ham.2012.1124) ; De Andrade, T. et al. Expression of new red cell-related genes in erythroid differentiation. Biochem. Genet 48, 164–171 (2010). (PMID: 1994105510.1007/s10528-009-9310-y) ; de Andrade, T. G. et al. Identification of novel candidate genes for globin regulation in erythroid cells containing large deletions of the human beta-globin gene cluster. Blood Cell. Mol. Dis. 37, 82–90 (2006). (PMID: 10.1016/j.bcmd.2006.07.003) ; Santen, G. W., Clayton-Smith, J. & Consortium, A. B. C. The ARID1B phenotype: what we have learned so far. Am. J. Med. Genet. Part C. 166C, 276–289 (2014). (PMID: 2516981410.1002/ajmg.c.31414) ; Lin, J. ARID1B: From the garden of Eden to the Sahara. J. Thorac. Cardiovasc. Surg. 155, e193–e194 (2018). (PMID: 2952636510.1016/j.jtcvs.2018.01.058) ; Lu, C. & Allis, C. D. SWI/SNF complex in cancer. Nat. Genet. 49, 178–179 (2017). (PMID: 28138149561713710.1038/ng.3779) ; Prasad, P., Lennartsson, A. & Ekwall, K. The roles of SNF2/SWI2 nucleosome remodeling enzymes in blood cell differentiation and leukemia. Biomed. Res. Int. 2015, 347571 (2015). (PMID: 257893154348595) ; Zhao, H. W. et al. Altered iPSC-derived neurons’ sodium channel properties in subjects with Monge’s disease. Neuroscience 288, 187–199 (2015). (PMID: 2555993110.1016/j.neuroscience.2014.12.039) ; Kobari, L. et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica 97, 1795–1803 (2012). (PMID: 22733021359008510.3324/haematol.2011.055566) ; Lee, K. S. et al. JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J. Biol. Chem. 284, 29454–29461 (2009). (PMID: 19720829278557810.1074/jbc.M109.028027) ; Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688) ; Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012). (PMID: 22217937327246410.1038/nature10730) ; Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015). (PMID: 2576534710.1093/bioinformatics/btv145) ; Lee, S., Cook, D. & Lawrence, M. plyranges: A grammar of genomic data transformation. Genome Biol. 20, 4 (2019). (PMID: 30609939632061810.1186/s13059-018-1597-8) ; van Heeringen, S. J. & Veenstra, G. J. GimmeMotifs: A de novo motif prediction pipeline for ChIP-sequencing experiments. Bioinformatics 27, 270–271 (2011). (PMID: 2108151110.1093/bioinformatics/btq636) ; Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 20513432289852610.1016/j.molcel.2010.05.004) ; Welch, R. P. et al. ChIP-Enrich: Gene set enrichment testing for ChIP-seq data. Nucleic Acids Res. 42, e105 (2014). (PMID: 24878920411774410.1093/nar/gku463) ; Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 14, 128 (2013). (PMID: 10.1186/1471-2105-14-128) ; Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 27141961498792410.1093/nar/gkw377) ; Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 44, D726–D732 (2016). (PMID: 2652772710.1093/nar/gkv1160) ; Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019). (PMID: 30808370639178910.1186/s13059-019-1642-2) ; Kulakovskiy, I. V. et al. HOCOMOCO: Towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018). (PMID: 2914046410.1093/nar/gkx1106) ; Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014). (PMID: 25215497416304110.1016/j.cell.2014.08.009) ; Cheneby, J., Gheorghe, M., Artufel, M. & Mathelier, A. & Ballester, B. ReMap 2018: An updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 46, D267–D275 (2018). (PMID: 2912628510.1093/nar/gkx1092) ; Luo, S. T. et al. The promotion of erythropoiesis via the regulation of reactive oxygen species by lactic acid. Sci. Rep. 7, 38105 (2017). (PMID: 28165036529272110.1038/srep38105) ; Trainor, C. D., Mas, C., Archambault, P., Di Lello, P. & Omichinski, J. G. GATA-1 associates with and inhibits p53. Blood 114, 165–173 (2009). (PMID: 19411634271094510.1182/blood-2008-10-180489) ; Inoue, H. et al. Target genes of the largest human SWI/SNF complex subunit control cell growth. Biochem. J. 434, 83–92 (2011). (PMID: 2111815610.1042/BJ20101358) ; Weiss, M. J. & Orkin, S. H. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. P. Natl Acad. Sci. USA 92, 9623–9627 (1995). (PMID: 10.1073/pnas.92.21.9623) ; Batie, M., Del Peso, L. & Rocha, S. Hypoxia and chromatin: A focus on transcriptional repression mechanisms. Biomedicines 6, 47 (2018). (PMID: 602731210.3390/biomedicines6020047) ; Kelso, T. W. R. et al. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. Elife 6, e30506 (2017). (PMID: 28967863564310010.7554/eLife.30506) ; Morin, S., Charron, F., Robitaille, L. & Nemer, M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19, 2046–2055 (2000). (PMID: 1079037130569710.1093/emboj/19.9.2046) ; Lee, H. Y. et al. PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 522, 474–477 (2015). (PMID: 25970251449826610.1038/nature14326) ; Abe, M. et al. GATA-6 is involved in PPARgamma-mediated activation of differentiated phenotype in human vascular smooth muscle cells. Arterioscler. Thromb. Vas. 23, 404–410 (2003). (PMID: 10.1161/01.ATV.0000059405.51042.A0) ; Kingsley, P. D. et al. Ontogeny of erythroid gene expression. Blood 121, e5–e13 (2013). (PMID: 23243273356734710.1182/blood-2012-04-422394) ; Lin, W. C. et al. The role of Sp1 and EZH2 in the regulation of LMX1A in cervical cancer cells. Biochim. Biophys. Acta. 1833, 3206–3217 (2013). (PMID: 2401820810.1016/j.bbamcr.2013.08.020) ; Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human Sw1/Snf Complex. Nature 370, 477–481 (1994). (PMID: 804716910.1038/370477a0) ; OwenHughes, T., Utley, R. T., Cote, J., Peterson, C. L. & Workman, J. L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996). (PMID: 10.1126/science.273.5274.513) ; Raab, J. R., Resnick, S. & Magnuson, T. Genome-wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. Plos Genet. 11, e1005748 (2015). (PMID: 26716708469989810.1371/journal.pgen.1005748) ; Cai, W. et al. Enhancer dependence of cell-type-specific gene expression increases with developmental age. P. Natl. Acad. Sci. USA 117, 21450–21458 (2020). (PMID: 10.1073/pnas.2008672117) ; Kindrick, J. D. & Mole, D. R. Hypoxic regulation of gene transcription and chromatin: Cause and effect. Int. J. Mol. Sci. 21, 8320 (2020). (PMID: 766419010.3390/ijms21218320) ; Melvin, A. & Rocha, S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell. Signal. 24, 35–43 (2012). (PMID: 21924352347653310.1016/j.cellsig.2011.08.019) ; Crispino, J. D. & Horwitz, M. S. GATA factor mutations in hematologic disease. Blood 129, 2103–2110 (2017). (PMID: 28179280539162010.1182/blood-2016-09-687889) ; Marion, W. et al. An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Adv. 4, 4679–4692 (2020). (PMID: 330021357556119)
  • Grant Information: R01 GM114362 United States GM NIGMS NIH HHS; R01 HL146530 United States HL NHLBI NIH HHS; S10 OD026929 United States OD NIH HHS
  • Substance Nomenclature: 0 (ARID1B protein, human) ; 0 (Chromatin) ; 0 (DNA-Binding Proteins) ; 0 (Transcription Factors) ; 0 (Tumor Suppressor Protein p53)
  • Entry Date(s): Date Created: 20220607 Date Completed: 20220708 Latest Revision: 20221017
  • Update Code: 20231215
  • PubMed Central ID: PMC9256584

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -