Zum Hauptinhalt springen

Effects of non-essential protein on D-glucose to control diabetes: DFT approach.

Tiwary, S ; Kumar, H ; et al.
In: Journal of molecular modeling, Jg. 28 (2022-01-25), Heft 2, S. 42
academicJournal

Titel:
Effects of non-essential protein on D-glucose to control diabetes: DFT approach.
Autor/in / Beteiligte Person: Tiwary, S ; Kumar, H ; Pateria, D ; Verma, ML
Zeitschrift: Journal of molecular modeling, Jg. 28 (2022-01-25), Heft 2, S. 42
Veröffentlichung: Berlin : Springer, c1996-, 2022
Medientyp: academicJournal
ISSN: 0948-5023 (electronic)
DOI: 10.1007/s00894-021-05013-7
Schlagwort:
  • Biomarkers
  • Cysteine analogs & derivatives
  • Cysteine blood
  • Cysteine chemistry
  • Density Functional Theory
  • Diabetes Mellitus blood
  • Disease Management
  • Glucose analogs & derivatives
  • Glucose chemistry
  • Humans
  • Models, Molecular
  • Molecular Conformation
  • Molecular Structure
  • Spectrum Analysis
  • Treatment Outcome
  • Amino Acids chemistry
  • Blood Glucose
  • Diabetes Mellitus diet therapy
  • Diabetes Mellitus metabolism
  • Dietary Proteins administration & dosage
  • Dietary Proteins chemistry
  • Glucose metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Mol Model] 2022 Jan 25; Vol. 28 (2), pp. 42. <i>Date of Electronic Publication: </i>2022 Jan 25.
  • MeSH Terms: Amino Acids* / chemistry ; Blood Glucose* ; Dietary Proteins* / administration & dosage ; Dietary Proteins* / chemistry ; Diabetes Mellitus / *diet therapy ; Diabetes Mellitus / *metabolism ; Glucose / *metabolism ; Biomarkers ; Cysteine / analogs & derivatives ; Cysteine / blood ; Cysteine / chemistry ; Density Functional Theory ; Diabetes Mellitus / blood ; Disease Management ; Glucose / analogs & derivatives ; Glucose / chemistry ; Humans ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Spectrum Analysis ; Treatment Outcome
  • References: Lojkova L, Vranová V, Formánek P, Drápelová I, Brtnicky M, Datta R (2020) Enantiomers of carbohydrates and their role in ecosystem interactions: a review. Symmetry 12:470. https://doi.org/10.3390/sym12030470. (PMID: 10.3390/sym12030470) ; João F. Lopes; Elvira M.S.M. Gaspar (2008). Simultaneous chromatographic separation of enantiomers, anomers and structural isomers of some biologically relevant monosaccharides. , 1188(1), 34 42. https://doi.org/10.1016/j.chroma.2007.12.016. ; Staden S-V, Raluca-Ioana; Mitrofan, Grigorina, (2018) Molecular enantiorecognition of l -glucose and d -glucose in whole blood samples. Chirality. https://doi.org/10.1002/chir.22843. (PMID: 10.1002/chir.22843) ; Tessari, Paolo; Lante, Anna; Mosca, Giuliano (2016). Essential amino acids: master regulators of nutrition and environmental footprint?. Sci Rep, 6(), 26074–. https://doi.org/10.1038/srep26074. ; Yang, Qingqing; Zhao, Dongsheng; Liu, Qiaoquan (2020). Connections between amino acid metabolisms in plants: lysine as an example. Front Plant Sci, 11(), 928–.  https://doi.org/10.3389/fpls.2020.00928. ; Rose, (2019). Amino acid nutrition and metabolism in health and disease. Nutrients, 11(11), 2623–.  https://doi.org/10.3390/nu11112623. ; Kohlmeier, Martin (2015). Nutrient metabolism || amino acids and nitrogen compounds. , (), 265–477.  https://doi.org/10.1016/B978-0-12-387784-0.00008-0. ; Staden R-I, Stefan-van; Popa-Tudor, Ioana; Ionescu-Tirgoviste, Constantin; Stoica, Roxana-Adriana; Magerusan, Lidia, (2019) Molecular enantiorecognition of D- and L-glucose in urine and whole blood samples. J Electrochem Soc 166(9):B3109–B3115. https://doi.org/10.1149/2.0211909jes. (PMID: 10.1149/2.0211909jes) ; Asiimwe, Debrah; Mauti, Godfrey O.; Kiconco, Ritah (2020). Prevalence and risk factors associated with type 2 diabetes in elderly patients aged 45–80 years at Kanungu District. J Diabetes Res, 2020(), 1–5. https://doi.org/10.1155/2020/5152146. ; Chiang JL, Kirkman M, Sue; Laffel, Lori M.B., Peters, Anne L. (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37(7):2034–2054. https://doi.org/10.2337/dc14-1140. (PMID: 10.2337/dc14-1140249357755865481) ; Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4):269–273. https://doi.org/10.5001/omj.2012.68. (PMID: 10.5001/omj.2012.68230718763464757) ; Lund, Marianne N.; Ray, Colin (2017). Control of Maillard reactions in foods: strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, (), acs.jafc.7b00882–. https://doi.org/10.1021/acs.jafc.7b00882. ; Hemmler, Daniel; Roullier-Gall, Chloé; Marshall, James W.; Rychlik, Michael; Taylor, Andrew J.; Schmitt-Kopplin, Philippe (2018). Insights into the chemistry of non-enzymatic browning reactions in different ribose-amino acid model systems. Scientific Reports, 8(1), 16879–.  https://doi.org/10.1038/s41598-018-34335-5. ; Lucotti, P.; Setola, E.; Monti, L. D.; Galluccio, E.; Costa, S.; Sandoli, E. P.; Fermo, I.; Rabaiotti, G.; Gatti, R.; Piatti, P. (2006). Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. AJP: Endocrinol Metab, 291(5), E906–E912.  https://doi.org/10.1152/ajpendo.00002.2006. ; Sogut, Ece; Ertekin Filiz, Bilge; Seydim, Atif Can (2020). A model system based on glucose arginine to monitor the properties of Maillard reaction products. J Food Sci Technol, (), –. https://doi.org/10.1007/s13197-020-04615-y. ; Sushil K. Jain; Thirunavukkarasu Velusamy; Jennifer L. Croad; Justin L. Rains; Rebeca Bull (2009). l-Cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-κB activation in the livers of Zucker diabetic rats. , 46(12), 1633–1638.  https://doi.org/10.1016/j.freeradbiomed.2009.03.014. ; Kaneko Y, Kimura Y, Kimura H, Niki I (2006) L-cysteine inhibits insulin release from the pancreatic -cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55(5):1391–1397. https://doi.org/10.2337/db05-1082. (PMID: 10.2337/db05-108216644696) ; Artacho, Emilio; Gale, Julian D; Soler, José M; García, Alberto; Junquera, Javier; Ordejón, Pablo; Sánchez-Portal, Daniel (2002). The SIESTA method for ab initio order- N materials simulation. , 14(11), 2745–2779.  https://doi.org/10.1088/0953-8984/14/11/302. ; Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple 77(18):3865–3868. https://doi.org/10.1103/physrevlett.77.3865. (PMID: 10.1103/physrevlett.77.3865) ; Ednara Joice Braga 1 , Brena Tabosa Corpe 1 , Márcia Machado Marinho 2 , Emmanuel Silva Marinho, Molecular electrostatic potential surface, HOMO–LUMO, and computational analysis of synthetic drug Rilpivirine, Int J Sci Eng Res, Volume 7, Issue 7, July-2016, ISSN 2229–5518. ; Kurt Stokbro; Jeremy Taylor; Mads Brandbyge; Pablo Ordejón (2003). TranSIESTA: a spice for molecular electronics. , 1006(none), 212–226.  https://doi.org/10.1196/annals.1292.014. ; Banger, Suman; Nayak, Vikas; Verma, U. P. (2017). AIP Conference Proceedings [Author(s) DAE SOLID STATE PHYSICS SYMPOSIUM 2016 - Bhubaneswar, Odisha, India (26–30 December 2016)] - cohesive energy of KH+nH (n=0, 2, 6, 8): a DFT study. , 1832(), 140003–.  https://doi.org/10.1063/1.4980785. ; Mole, Susan J.; Zhou, Xuefeng; Liu, Ruifeng (1996). Density Functional Theory (DFT) study of enthalpy of formation. 1. Consistency of DFT energies and atom equivalents for converting DFT energies into enthalpies of formation. J Phys Chem, 100(35), 14665–14671.  https://doi.org/10.1021/jp960801h. ; Pokharia, Sandeep; Joshi, Rachana; Pokharia, Mamta; Yadav, Swatantra Kumar; Mishra, Hirdyesh (2016). A density functional theory insight into the structure and reactivity of diphenyltin(IV) derivative of glycylphenylalanine. Main Group Met Chem, 39(3–4), –.  https://doi.org/10.1515/mgmc-2016-0009. ; Matczak, Piotr (2016). A test of various partial atomic charge models for computations on diheteroaryl ketones and thioketones. Computation, 4(1), 3–.  https://doi.org/10.3390/computation4010003. ; Fonseca C, Guerra; Jan-Willem Handgraaf; Evert Jan Baerends; F. Matthias Bickelhaupt, (2004) Voronoi deformation density (VDD) charges: Assessment of the Mulliken. Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis 25(2):189–210. https://doi.org/10.1002/jcc.10351. (PMID: 10.1002/jcc.10351) ; Amaku Friday James*, Otuokere Ifeanyi Edozie, Theoretical approach on structural aspects of a potent, selective, orally bioavailable hedgehog antagonist, 2-chloro-N-[4-chloro-3-(pyridin-2-yl)phenyl]-4-(methylsulfonyl)benzamide, Indian J Adv Chem Sci 4(1) (2016) 31–35. ; Thakur V, Kumar N, Rao BK, Verma ML, Sahu HD, Verma S, Choubey AK (2021) Density functional study on hybrid graphene/h-BN 2D sheets. Physica E 133:114812. https://doi.org/10.1016/j.physe.2021.11481. (PMID: 10.1016/j.physe.2021.11481) ; S Verma, A Kumar, H Kumar, R Baghel, N Goel, ML Verma, Ab-initio modelling for gas sensor device: based on Y-doped SnS2 monolayer Physica E: Low-dimensional Systems and Nanostructures 135, 114962, 2022,  https://doi.org/10.1016/j.physe.2021.114962. ; Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694. https://doi.org/10.1103/PhysRevLett.49.1691. ; Chattaraj P, Kumar; Chakraborty, Arindam; Giri, Santanab, (2009) Net electrophilicity. J Phys Chem A 113(37):10068–10074. https://doi.org/10.1021/jp904674x. ; Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and Electroaccepting Powers. J Phys Chem A 111(10):1966–1970. https://doi.org/10.1021/jp065459f. (PMID: 10.1021/jp065459f17305319) ; Singh, Anshika N.; Baruah, Meghna M.; Sharma, Neeti (2017). Structure Based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against prostate cancer. Sci Rep, 7(1), 1955–.  https://doi.org/10.1038/s41598-017-02023-5. ; Thakur, Vishal; Kumar, Narender; Verma, Mohan L.; Choubey, Anil Kumar; Verma, Swati; Chettri, Bhanu; Sahu, Homendra D.; Rao, B. Keshav (2020). Density functional study on hybrid h-BN/graphene atomic chains. Physica E: Low-dimensional Systems and Nanostructures, 124(), 114316–. https://doi.org/10.1016/j.physe.2020.114316. ; Moth-Poulsen K, Bjørnholm T (2009) Molecular electronics with single molecules in solid-state devices 4(9):551–556. https://doi.org/10.1038/nnano.2009.176. (PMID: 10.1038/nnano.2009.176) ; S. M. Lindsay; M. A. Ratner (2007). Molecular transport junctions: clearing mists. , 19(1), 23 31. https://doi.org/10.1002/adma.200601140.
  • Contributed Indexing: Keywords: Amino acids; Density functional theory; Diabetes; Glc-arg; Glc-cys; SIESTA
  • Substance Nomenclature: 0 (Amino Acids) ; 0 (Biomarkers) ; 0 (Blood Glucose) ; 0 (Dietary Proteins) ; 38325-69-8 (glucose-cysteine) ; IY9XDZ35W2 (Glucose) ; K848JZ4886 (Cysteine)
  • Entry Date(s): Date Created: 20220125 Date Completed: 20220330 Latest Revision: 20220330
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -