Zum Hauptinhalt springen

Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower.

Zhang, H ; Yan, H ; et al.
In: Scientific reports, Jg. 11 (2021-01-13), Heft 1, S. 1167
academicJournal

Titel:
Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower.
Autor/in / Beteiligte Person: Zhang, H ; Yan, H ; Li, Q ; Lin, H ; Wen, X
Zeitschrift: Scientific reports, Jg. 11 (2021-01-13), Heft 1, S. 1167
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2021
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-80891-0
Schlagwort:
  • Acyclic Monoterpenes chemistry
  • Alcohols chemistry
  • Aldehydes chemistry
  • Gas Chromatography-Mass Spectrometry methods
  • Ketones chemistry
  • Microwaves
  • Odorants
  • Oils, Volatile chemistry
  • Solid Phase Microextraction methods
  • Flowers chemistry
  • Prunus avium chemistry
  • Volatile Organic Compounds chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2021 Jan 13; Vol. 11 (1), pp. 1167. <i>Date of Electronic Publication: </i>2021 Jan 13.
  • MeSH Terms: Flowers / *chemistry ; Prunus avium / *chemistry ; Volatile Organic Compounds / *chemistry ; Acyclic Monoterpenes / chemistry ; Alcohols / chemistry ; Aldehydes / chemistry ; Gas Chromatography-Mass Spectrometry / methods ; Ketones / chemistry ; Microwaves ; Odorants ; Oils, Volatile / chemistry ; Solid Phase Microextraction / methods
  • References: Pino, J. A. & Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Fragrance J. 21, 207–213 (2006). (PMID: 10.1002/ffj.1703) ; Yang, D. S., Lee, K., Jeong, O., Kim, K. & Kays, S. J. Characterization of volatile aroma compounds in cooked black rice. J. Agric. Food Chem. 56, 235–240 (2008). (PMID: 1808124810.1021/jf072360c) ; Ning, L. et al. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 129, 1242–1252 (2011). (PMID: 2521236310.1016/j.foodchem.2011.03.115) ; Nekoei, M. & Mohammadhosseini, M. Application of HS-SPME, SDME and cold-press coupled to GC/MS to analysis the essential oils of Citrus sinensis CV. Thomson Navel and QSRR study for prediction of retention indices by stepwise and genetic algorithm-multiple linear regression approaches. Anal. Chem. Lett. 4, 93–103 (2014). (PMID: 10.1080/22297928.2013.770670) ; Nekoei, M. & Mohammadhosseini, M. Chemical compositions of the essential oils from the aerial parts of Achillea wilhelmsii using traditional hydrodistillation, microwave assisted hydro- distillation and solvent-free microwave extraction methods: Comparison with the volatile compounds obtained by headspace solid-phase microextraction. J. Essent. Oil Bear. Plants 19, 59–75 (2016). (PMID: 10.1080/0972060X.2014.890077) ; Mohammadhosseini, M., Akbarzadeh, A. & Flamini, G. Profiling of compositions of essential oils and volatiles of Salvia limbata using traditional and advanced techniques and evaluation for biological activities of their extracts. Chem. Biodivers. 14, e1600361 (2017). (PMID: 10.1002/cbdv.201600361) ; Wang, J., Zhang, Y., Wang, H. & Huo, S. Evaluation of extraction technologies and optimization of microwave and ultrasonic assisted consecutive extraction of phenolic antioxidants from winery byproducts. J. Food Process Eng. 42, e13064.1–e13064.13 (2019). (PMID: 10.1111/jfpe.13064) ; Hashemi-Moghaddam, H., Mohammadhosseini, M., & Azizi, Z. Impact of amine- and phenyl-functionalized magnetic nanoparticles impacts on microwave-assisted extraction of essential oils from root of Berberis integerrima Bunge. J. Appl. Res. Med. Aromat. Plants 10, 1–8 (2018). ; Mohammadhosseini, M. Essential oils extracted using microwave-assisted hydrodistillation from aerial parts of eleven Artemisia species: Chemical compositions and diversities in different geographical regions of Iran. Records Nat. Prod. 11, 114–129 (2017). ; Zanousi, M. B. P., Nekoei, M. & Mohammadhosseini, M. Composition of the essential oils and volatile fractions of Artemisia absinthium by three different extraction methods: Hydrodistillation, solvent-free microwave extraction and headspace solid-phase microextraction combined with a novel QSRR evaluation. J. Essent. Oil Bear. Plants 19, 1561–1581 (2016). (PMID: 10.1080/0972060X.2014.1001139) ; Ma, C. et al. Extraction of dihydroquercetin from Larix gmelinii with ultrasound-assisted and microwave-assisted alternant digestion. Int. J. Mol. Sci. 13, 8789–8804 (2012). (PMID: 22942735343026610.3390/ijms13078789) ; Xiang, Z. & Wu, X. Ultrasonic-microwave assisted extraction of total flavonoids from Scutellaria baicalensis using response surface methodology. Pharm. Chem. J. 51, 318–323 (2017). (PMID: 10.1007/s11094-017-1606-3) ; Xiao, G., Lv, L., Jing, L. & Sen, L. Effects of ultrasonic-microwave-assisted technology on hordein extraction from barley and optimization of process parameters using response surface methodology. J. Food Qual. 2018, 1–8 (2018). ; Liu, Q. et al. Analysis of the variation in scent components of Hosta flowers by HS-SPME and GC–MS. Sci. Hortic. 175, 57–67 (2014). (PMID: 10.1016/j.scienta.2014.06.001) ; Johnson, T. S. et al. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. Phytochemistry 122, 103–112 (2016). (PMID: 2665485610.1016/j.phytochem.2015.11.010) ; Bergougnoux, V. et al. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226, 853–866 (2007). (PMID: 1752028110.1007/s00425-007-0531-1) ; Ruddigkeit, L., Awale, M. & Reymond, J. Expanding the fragrance chemical space for virtual screening. J. Cheminform. 6, 27–27 (2014). (PMID: 24876890403771810.1186/1758-2946-6-27) ; Schwab, W., Fischer, T. C., Giri, A. K. & Wust, M. Potential applications of glucosyltransferases in terpene glucoside production: Impacts on the use of aroma and fragrance. Appl. Microbiol. Biotechnol. 99, 165–174 (2015). (PMID: 2543101310.1007/s00253-014-6229-y) ; Dhandapani, S., Jin, J., Sridhar, V. & Rajani, S. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics 18, 463 (2017). (PMID: 28615048547191210.1186/s12864-017-3846-8) ; Ionescu, I. A. et al. Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Front. Plant Sci. 8, 1233 (2017). (PMID: 28769948551185310.3389/fpls.2017.01233) ; Jiao, F., Liu, Q., Sun, G., Li, X. & Zhang, J. Floral fragrances of Hemerocallis L. (daylily) evaluated by headspace solid-phase microextraction with gas chromatography-mass spectrometry. J. Hortic. Sci. Biotechnol. 91, 573–581 (2016). (PMID: 10.1080/14620316.2016.1193427) ; Colquhoun, T. A. & Clark, D. G. Unraveling the regulation of floral fragrance biosynthesis. Plant Signal. Behav. 6, 378–381 (2011). (PMID: 21673507314241910.4161/psb.6.3.14339) ; Hayaloglu, A. A. & Demir, N. Phenolic compounds, volatiles, and sensory characteristics of twelve sweet cherry (Prunus avium L.) cultivars grown in Turkey. J. Food Sci. 81, 7–18 (2016). (PMID: 10.1111/1750-3841.13175) ; Usenik, V., Fabcic, J. & Stampar, F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 107, 185–192 (2008). (PMID: 10.1016/j.foodchem.2007.08.004) ; Wang, J. et al. Complete genomic characterization of Plum bark necrosis stem pitting-associated virus infecting sweet cherry in China. Genome Announc. 4, e00413-e416 (2016). (PMID: 27198034488898510.1128/genomeA.00413-16) ; Lech, W., Małodobry, M., Dziedzic, E., Bieniasz, M. & Doniec, S. Analysis of flowering of several sweet cherry cultivars in the climatic conditions of southern poland. Acta Hort. 21, 143–148 (2012). (PMID: 10.17660/ActaHortic.2012.932.21) ; Legua, P. et al. Bioactive and volatile compounds in sweet cherry cultivars. J. Food Nutr. Res. 5, 844–851 (2017). (PMID: 10.12691/jfnr-5-11-8) ; Kong, W. L., Rui, L., Ni, H. & Wu, X. Q. Antifungal effects of volatile organic compounds produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Front. Microbiol. 11, 1114 (2020). (PMID: 32547526727153010.3389/fmicb.2020.01114) ; Matok, N., Lachowicz, S., Gorzelany, J. & Balawejder, M. Influence of drying method on some bioactive compounds and the composition of volatile components in dried pink rock rose (Cistus creticus L.). Molecules 25, 2596 (2020). (PMID: 10.3390/molecules25112596) ; Emelda, A. Ongo, Giuseppe Montevecchic, Andrea Antonellic, Veronica Sberveglierid, Fortunato Sevilla III. Metabolomics fingerprint of Philippine coffee by SPME-GC-MS for geographical and varietal classification. Food Res. Int. 134, 109227 (2020). (PMID: 10.1016/j.foodres.2020.109227) ; Mason, T. J., Chemat, F. & Vinatoru, M. The extraction of natural products using ultrasound or microwaves. Curr. Org. Chem. 15, 237–247 (2011). (PMID: 10.2174/138527211793979871) ; Kittiphoom, S. & Sutasinee, S. Effect of microwaves pretreatments on extraction yield and quality of mango seed kernel oil. Int. Food Res. J. 22, 960–964 (2015). ; Routray, W. & Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 5, 409–424 (2012). (PMID: 10.1007/s11947-011-0573-z) ; Gan, C. Y. & Latiff, A. A. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 124, 1277–1283 (2011). (PMID: 10.1016/j.foodchem.2010.07.074) ; Aros, D. et al. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 63, 2739–2752 (2012). (PMID: 22268153334623210.1093/jxb/err456) ; Xu, D. et al. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 217, 552–559 (2017). (PMID: 2766467110.1016/j.foodchem.2016.09.013) ; Bartak, P., Bednař, P., Cap, L., Ondrakova, L. & Stranský, Z. SPME—A valuable tool for investigation of flower scent. J. Sep. Sci. 26, 715–721 (2003). (PMID: 10.1002/jssc.200301381) ; Lejish, V. et al. Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: Discovery of a missing dimethyl sulfide source to the atmospheric environment. Atmos. Chem. Phys. 20, 375–389 (2020). (PMID: 10.5194/acp-20-375-2020) ; Dotterl, S. et al. Linalool and lilac aldehyde/alcohol in flower scents: Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 1113, 231–238 (2006). (PMID: 1654266810.1016/j.chroma.2006.02.011) ; Lavy, M. et al. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 9, 103–111 (2002). (PMID: 10.1023/A:1026755414773) ; Usuki, T. & Munakata, K. Extraction of essential oils from the flowers of Osmanthus fragrans var. aurantiacus using an ionic liquid. Bull. Chem. Soc. Jpn. 90, 1105–1110 (2017). (PMID: 10.1246/bcsj.20170202) ; Wakai, J. et al. Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry. Sci. Rep. 9, 101–112 (2019). (PMID: 10.1038/s41598-019-46307-4) ; Podd, L. A. & Van Staden, J. The role of ethanol and acetaldehyde in flower senescence and fruit ripening: A review. Plant Growth Regul. 26, 183–189 (1998). (PMID: 10.1023/A:1006131517539) ; Dong, L. et al. Analysis of volatile compounds from a malting process using headspace solid-phase micro-extraction and GC-MS. Food Res. Int. 51, 783–789 (2013). (PMID: 10.1016/j.foodres.2013.01.052) ; Knudsen, J. T., Eriksson, R., Gershenzon, J. & Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006). (PMID: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2) ; Blum, M. S., Padovani, F., Curley, A. & Hawk, R. E. Benzaldehyde: Defensive secretion of a harvester ant. Comp. Biochem. Physiol. 29, 461–465 (1969). (PMID: 579583010.1016/0010-406X(69)91766-6) ; Lee, B., Choi, W., Lee, S. & Park, B. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot. 20, 317–320 (2001). (PMID: 10.1016/S0261-2194(00)00158-7) ; Sun, Y., Yu, H., Zhou, J., Pickett, J. A. & Wu, K. Plant volatile analogues strengthen attractiveness to insect. PLoS ONE 9, e99142 (2014). (PMID: 24911460404961210.1371/journal.pone.0099142) ; Márczy, J. S. et al. Production of hexanal from hydrolyzed sunflower oil by lipoxygenase and hydroperoxid lyase enzymes. Biotechnol. Lett. 24, 1673–1675 (2002). (PMID: 10.1023/A:1020657618363) ; Qadri, M. et al. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds. World J. Microbiol. Biotechnol. 31, 1647–1654 (2015). (PMID: 2622085110.1007/s11274-015-1910-6) ; Roeder, S., Hartmann, A. M., Effmert, U. & Piechulla, B. Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens. Plant Mol. Biol. 65, 107–124 (2007). (PMID: 1761179710.1007/s11103-007-9202-7) ; Diniz, T. C. et al. Anticonvulsant, sedative, anxiolytic and antidepressant activities of the essential oil of Annona vepretorum in mice: Involvement of GABAergic and serotonergic systems. Biomed. Pharmacother. 111, 1074–1087 (2019). (PMID: 3084142110.1016/j.biopha.2018.12.114)
  • Substance Nomenclature: 0 (Acyclic Monoterpenes) ; 0 (Alcohols) ; 0 (Aldehydes) ; 0 (Ketones) ; 0 (Oils, Volatile) ; 0 (Volatile Organic Compounds) ; 505-57-7 (2-hexenal) ; D81QY6I88E (linalool)
  • Entry Date(s): Date Created: 20210114 Date Completed: 20210813 Latest Revision: 20230127
  • Update Code: 20231215
  • PubMed Central ID: PMC7806641

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -