Zum Hauptinhalt springen

Global translation during early development depends on the essential transcription factor PRDM10.

Han, BY ; Seah, MKY ; et al.
In: Nature communications, Jg. 11 (2020-07-17), Heft 1, S. 3603
academicJournal

Titel:
Global translation during early development depends on the essential transcription factor PRDM10.
Autor/in / Beteiligte Person: Han, BY ; Seah, MKY ; Brooks, IR ; Quek, DHP ; Huxley, DR ; Foo, CS ; Lee, LT ; Wollmann, H ; Guo, H ; Messerschmidt, DM ; Guccione, E
Zeitschrift: Nature communications, Jg. 11 (2020-07-17), Heft 1, S. 3603
Veröffentlichung: [London] : Nature Pub. Group, 2020
Medientyp: academicJournal
ISSN: 2041-1723 (electronic)
DOI: 10.1038/s41467-020-17304-3
Schlagwort:
  • Animals
  • Embryonic Development
  • Embryonic Stem Cells metabolism
  • Eukaryotic Initiation Factors genetics
  • Eukaryotic Initiation Factors metabolism
  • Female
  • Intracellular Signaling Peptides and Proteins genetics
  • Intracellular Signaling Peptides and Proteins metabolism
  • Male
  • Mice embryology
  • Mice genetics
  • Protein Biosynthesis
  • Transcription Factors genetics
  • Gene Expression Regulation, Developmental
  • Mice metabolism
  • Transcription Factors metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Commun] 2020 Jul 17; Vol. 11 (1), pp. 3603. <i>Date of Electronic Publication: </i>2020 Jul 17.
  • MeSH Terms: Gene Expression Regulation, Developmental* ; Mice / *metabolism ; Transcription Factors / *metabolism ; Animals ; Embryonic Development ; Embryonic Stem Cells / metabolism ; Eukaryotic Initiation Factors / genetics ; Eukaryotic Initiation Factors / metabolism ; Female ; Intracellular Signaling Peptides and Proteins / genetics ; Intracellular Signaling Peptides and Proteins / metabolism ; Male ; Mice / embryology ; Mice / genetics ; Protein Biosynthesis ; Transcription Factors / genetics
  • References: Fog, C. K., Galli, G. G. & Lund, A. H. PRDM proteins: important players in differentiation and disease. Bioessays 34, 50–60 (2012). (PMID: 2202806510.1002/bies.201100107) ; Hohenauer, T. & Moore, A. W. The Prdm family: expanding roles in stem cells and development. Development 139, 2267–2282 (2012). (PMID: 2266981910.1242/dev.070110) ; Aguilo, F. et al. Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117, 5057–5066 (2011). (PMID: 21343612310953210.1182/blood-2010-08-300145) ; Vincent, S. D. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005). (PMID: 1575018410.1242/dev.01711) ; Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010). (PMID: 20084069286455610.1038/ni.1837) ; Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nat. Publ. Group 454, 961–967 (2008). ; Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nat. Publ. Group 460, 1154–1158 (2009). ; Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382 (2013). (PMID: 2333314810.1016/j.stem.2012.12.012) ; Mzoughi, S. et al. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat. Genet 49, 1354–1363 (2017). (PMID: 2874026410.1038/ng.3922) ; Siegel, D. A., Huang, M. K. & Becker, S. F. Ectopic dendrite initiation: CNS pathogenesis as a model of CNS development. Int. J. Dev. Neurosci. 20, 373–389 (2002). (PMID: 1217587710.1016/S0736-5748(02)00055-2) ; Vervoort, M., Meulemeester, D., Béhague, J. & Kerner, P. Evolution of Prdm Genes in Animals: Insights from Comparative Genomics. Mol. Biol. Evol. 33, 679–696 (2016). (PMID: 2656035210.1093/molbev/msv260) ; Park, J.-A. & Kim, K. C. Expression patterns of PRDM10 during mouse embryonic development. BMB Rep. 43, 29–33 (2010). (PMID: 2013273210.5483/BMBRep.2010.43.1.029) ; Park, J.-A., Kim, T.-H., Lee, B., Kwon, E. & Kim, K. C. Expression of PRDM10 in arthritic synovial derived tissues. Genes Genom. 35, 685–691 (2013). (PMID: 10.1007/s13258-013-0119-z) ; Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016). (PMID: 27626380529582110.1038/nature19356) ; Hofvander, J. et al. Recurrent PRDM10 gene fusions in undifferentiated pleomorphic sarcoma. Clin. Cancer Res. 21, 864–869 (2015). (PMID: 2551688910.1158/1078-0432.CCR-14-2399) ; Hofvander, J. et al. Undifferentiated pleomorphic sarcomas with PRDM10fusions have a distinct gene expression profile. J. Pathol. 249, 425–434 (2019). (PMID: 3131329910.1002/path.5326) ; Chia, N.-Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010). (PMID: 2095317210.1038/nature09531) ; Arnold, C. D. et al. A high‐throughput method to identify trans‐activation domains within transcription factor sequences. EMBO J. 37, e98896 (2018). (PMID: 30006452609262110.15252/embj.201798896) ; Mzoughi, S., Tan, Y. X., Low, D. & Guccione, E. The role of PRDMs in cancer: one family, two sides. Curr. Opin. Genet. Dev. 36, 83–91 (2016). (PMID: 2715335210.1016/j.gde.2016.03.009) ; Koyanagi-Katsuta, R. et al. Embryonic lethality of mutant mice deficient in the p116 gene. J. Biochem. 131, 833–837 (2002). (PMID: 1203897910.1093/oxfordjournals.jbchem.a003172) ; Masutani, M., Sonenberg, N., Yokoyama, S. & Imataka, H. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26, 3373–3383 (2007). (PMID: 17581632193339610.1038/sj.emboj.7601765) ; Hinnebusch, A. G. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochemical Sci. 31, 553–562 (2006). (PMID: 10.1016/j.tibs.2006.08.005) ; Hinnebusch, A. G. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochemical Sci. 42, 589–611 (2017). (PMID: 10.1016/j.tibs.2017.03.004) ; Valášek, L. S. et al. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res. 45, 10948–10968 (2017). (PMID: 28981723573739310.1093/nar/gkx805) ; Aitken, C. E. et al. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. eLife 5, 111 (2016). (PMID: 10.7554/eLife.20934) ; Shohat, S. & Shifman, S. Genes essential for embryonic stem cells are associated with neurodevelopmental disorders. Genome Res. 29, 1910–1918 (2019). (PMID: 31649057683674210.1101/gr.250019.119) ; Zhang, L., Pan, X. & Hershey, J. W. B. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282, 5790–5800 (2007). (PMID: 1717011510.1074/jbc.M606284200) ; Fumasoni, I. et al. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol. Biol. 7, 187 (2007). (PMID: 17916234208242910.1186/1471-2148-7-187) ; Vogel, C. & Chothia, C. Protein family expansions and biological complexity. PLoS Comput Biol. 2, e48 (2006). (PMID: 16733546146481010.1371/journal.pcbi.0020048) ; Lee, A. S. Y., Kranzusch, P. J. & Cate, J. H. D. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111–114 (2015). (PMID: 25849773460383310.1038/nature14267) ; Buszczak, M., Signer, R. A. J. & Morrison, S. J. Cellular differences in protein synthesis regulate tissue homeostasis. Cell 159, 242–251 (2014). (PMID: 25303523422218210.1016/j.cell.2014.09.016) ; Signer, R. A. J., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014). (PMID: 24670665401562610.1038/nature13035) ; Tahmasebi, S., Amiri, M. & Sonenberg, N. Translational control in stem cells. Front. Genet 9, 709 (2018). (PMID: 3069722710.3389/fgene.2018.00709) ; Lee, H. J., Gutierrez Garcia, R. & Vilchez, D. Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J. 284, 391–398 (2017). (PMID: 2739861410.1111/febs.13810) ; Gao, Y. et al. Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep. 21, 3957–3969 (2017). (PMID: 2928184010.1016/j.celrep.2017.11.111) ; Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008). (PMID: 1846269510.1016/j.stem.2008.03.013) ; Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011). (PMID: 22056041322528810.1016/j.cell.2011.10.002) ; You, K. T., Park, J. & Kim, V. N. Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev. 29, 2004–2009 (2015). (PMID: 26443847460434210.1101/gad.267112.115) ; Corsini, N. S. et al. Coordinated control of mRNA and rRNA processing controls embryonic stem cell pluripotency and differentiation. Cell Stem Cell 22, 543–558.e12 (2018). (PMID: 2962506910.1016/j.stem.2018.03.002) ; Bulut-Karslioglu, A. et al. The transcriptionally permissive chromatin state of embryonic stem cells is acutely tuned to translational output. Cell Stem Cell 22, 369–383.e8 (2018). (PMID: 29499153583650810.1016/j.stem.2018.02.004) ; Yeo, J.-C. & Ng, H. H. The transcriptional regulation of pluripotency. Cell Res. 23, 20–32 (2012). (PMID: 23229513354166010.1038/cr.2012.172) ; Li, M. & Belmonte, J. C. I. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20, 1–11 (2018). (PMID: 10.1038/s41556-017-0025-8) ; Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011). ; Zhu, L. J. et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinforma. 11, 237 (2010). (PMID: 10.1186/1471-2105-11-237) ; Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011). (PMID: 21221095334618210.1038/nbt.1754) ; Stempor, P. & Ahringer, J. SeqPlots—interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res. 1, 14 (2016). (PMID: 27918597513338210.12688/wellcomeopenres.10004.1) ; Rosenbloom, K. R. et al. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2012). (PMID: 23193274353115210.1093/nar/gks1172) ; Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 20513432289852610.1016/j.molcel.2010.05.004) ; Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). (PMID: 10.1038/nprot.2014.00624385147) ; Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012). (PMID: 23104886353090510.1093/bioinformatics/bts635) ; Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011). (PMID: 10.1186/1471-2105-12-323) ; Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8) ; Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Comms 10, 615 (2019). (PMID: 10.1038/s41467-018-08134-5)
  • Substance Nomenclature: 0 (Eukaryotic Initiation Factors) ; 0 (Intracellular Signaling Peptides and Proteins) ; 0 (TRIP-1 protein, mouse) ; 0 (Transcription Factors) ; 0 (Tristanin protein, mouse)
  • Entry Date(s): Date Created: 20200719 Date Completed: 20200918 Latest Revision: 20220418
  • Update Code: 20240513
  • PubMed Central ID: PMC7368010

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -