Zum Hauptinhalt springen

A neural circadian signal essential for ovulation is generated in the suprachiasmatic nucleus during each stage of the oestrous cycle.

Silva, CC ; Cortés, GD ; et al.
In: Experimental physiology, Jg. 105 (2020-02-01), Heft 2, S. 258-269
academicJournal

Titel:
A neural circadian signal essential for ovulation is generated in the suprachiasmatic nucleus during each stage of the oestrous cycle.
Autor/in / Beteiligte Person: Silva, CC ; Cortés, GD ; Javier, CY ; Flores, A ; Domínguez, R
Zeitschrift: Experimental physiology, Jg. 105 (2020-02-01), Heft 2, S. 258-269
Veröffentlichung: Cambridge, Eng : Wiley-Blackwell ; <i>Original Publication</i>: Cambridge ; New York, NY, USA : Published for the Physiological Society by Cambridge University Press, c1990-, 2020
Medientyp: academicJournal
ISSN: 1469-445X (electronic)
DOI: 10.1113/EP087942
Schlagwort:
  • Animals
  • Chorionic Gonadotropin administration & dosage
  • Circadian Rhythm drug effects
  • Estrous Cycle drug effects
  • Female
  • Humans
  • Microinjections methods
  • Ovulation drug effects
  • Rats
  • Suprachiasmatic Nucleus drug effects
  • Tetrodotoxin administration & dosage
  • Circadian Rhythm physiology
  • Estrous Cycle metabolism
  • Ovulation metabolism
  • Suprachiasmatic Nucleus metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Exp Physiol] 2020 Feb; Vol. 105 (2), pp. 258-269. <i>Date of Electronic Publication: </i>2020 Jan 09.
  • MeSH Terms: Circadian Rhythm / *physiology ; Estrous Cycle / *metabolism ; Ovulation / *metabolism ; Suprachiasmatic Nucleus / *metabolism ; Animals ; Chorionic Gonadotropin / administration & dosage ; Circadian Rhythm / drug effects ; Estrous Cycle / drug effects ; Female ; Humans ; Microinjections / methods ; Ovulation / drug effects ; Rats ; Suprachiasmatic Nucleus / drug effects ; Tetrodotoxin / administration & dosage
  • References: Akema, T., Hashimoto, R., & Kimura, F. (1988). Preoptic injections of VIP, but not secretin or PHI, inhibits LH and stimulates prolactin secretion in the ovariectomized rat. Brain Research, 441, 367-370. ; Babb, J. A., Masini, C. V., Day, H. E. W., & Campeau, S. (2013). Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience, 234, 40-52. ; Barbacka-Surowiak, G., Surowiak, J., & Stoklosowa, S. (2003). The involvement of the suprachiasmatic nuclei in the regulation of estrous cycles in rodents. Reproductive Biology, 3, 99-129. ; Beattie, C. W., & Schwartz, N. B. (1973). Blockade of the proestrous LH surge in cyclic rats by administration of barbiturates on diestrus. Proceedings of the Society for Experimental Biology and Medicine, 142, 933-935. ; Bohenke, S. E., & Rasmusson, D. D. (2001). Time course and effective spread of lidocaine and tetrodotoxin delivered via microdialysis: an electrophysiological study in cerebral cortex. Journal of Neuroscience Methods 105, 133-141. ; Brown-Grant, K., & Raisman, G. (1977). Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198, 279-296. ; Buijs, F. N., Guzmán-Ruíz, M., León-Mercado, L., Basualdo, M. C., Escobar, C., Kalsbeek, A., & Buijs, R. M. (2017). Suprachiasmatic nucleus interaction with the arcuate nucleus; essential for organizing physiological rhythms. Eneuro, 4, ENEURO.0028-17.2017. ; Caligaris, L., Astrada, J. J., & Taleisnik, S. (1971). Release of luteinizing hormone induced by estrogen injection into ovariectomized rats. Endocrinology, 88, 810-815. ; Campbell, C. S., & Schwartz, N. B. (1980). The impact of constant light on the estrous cycle of the rat. Endocrinology, 106, 1230-1238. ; Cecconello, A. L., Raineki, C., Sebben, V., Lucion, A. B., & Sanvitto, G. L. (2010). Effect of acute stress on sexual behavior in female rats: Participation of the central angiotensinergic system. Behavioral Brain Research, 2, 429-433. ; Colombo, J. A., & Phelps, C. P. (1981). Prolactin and luteinizing hormone release after diencephalic lesions and stimulations. Brain Research Bulletin, 6, 243-249. ; Conti, M., Hsieh, M., Zamah, A. M., & Su Oh, J. (2012). Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Molecular and Cellular Endocrinology, 365, 65-73. ; Cruz, M. E., Castro, J., & Domínguez, R. (1992). A comparative analysis of the neuroendocrine mechanisms regulating ovulation, affected by a unilateral implant of atropine in the preoptic-anterior hypothalamic area, in intact and hemiovariectomized adult rats. Journal of Endocrinology, 133, 205-210. ; de la Iglesia, H. O., Blaustein, J. D., & Bittman, E. L. (1995). The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport, 6, 1715-1722. ; de la Iglesia, H. O., Blaustein, J. D., & Bittman, E. L. (1999). Oestrogen receptor-alpha-immunoreactive neurons project to the suprachiasmatic nucleus of the female Syrian hamster. Journal of Neuroendocrinology, 11, 481-490. ; de la Iglesia, H. O., Meyer, J., & Schwartz, W. J. (2003). Lateralization of circadian pacemaker output: Activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. Journal of Neuroscience Nursing, 23, 7412-7414. ; de la Iglesia, H. O., & Schwartz, W. J. (2006). Minireview: Timely ovulation: Circadian regulation of the female hypothalamo-pituitary-gonadal axis. Endocrinology, 147, 1148-1153. ; Dolatshad, H., Campbell, E. A., O'Hara, L., Maywood, E. S., Hastings, M. H., & Johnson, M. H. (2006). Developmental and reproductive performance in circadian mutant mice. Human Reproduction, 21, 68-79. ; Domínguez, R., & Cruz-Morales, S. E. (2011). The ovarian innervation participates in the regulation of ovarian functions. Endocrinology and Metabolic Syndrome, S4, 001, doi: 10.1186/1477-7827-9-34. ; Domínguez, R., & Smith, E. R. (1974). Barbiturate blockade of ovulation on days other than proestrous in the rat. Neuroendocrinology, 14, 212-223. ; Donadio, M. V., Kunrath, A., Corezola, K. L., Franci, C. R., Anselmo-Franci, J. A., Lucion, A. B., & Sanvitto, G. L. (2007). Effects of acute stress on the day of proestrus on sexual behavior and ovulation in female rats: participation of the angiotensinergic system. Physiology & Behavior, 92, 591-600. ; Everett, J. W., & Sawyer, C. H. (1950). A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology, 47, 198-218. ; Freund, N., Manns, M., & Rose, J. (2010). A method for the evaluation of intracranial tetrodotoxin injections. Journal of Neuroscience Methods, 186, 25-28. ; Gray, G. D., Sodersten, P., Tallentire, D., & Davidson, J. M. (1978). Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology, 25, 174-191. ; Grundy, D. (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Experimental Physiology, 100, 755-758. ; Hahn, J. D., & Coen, C. W. (2006). Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. Journal of Comparative Neurology, 494, 190-214. ; Hardy, D. F. (1970). The effect of constant light on the estrous cycle and behavior of the female rat. Physiology & Behavior, 5, 421-425. ; Harlan, R. E., Shivers, B. D., Kow, L., & Pfaff, D. W. (1983). Estrogenic maintenance of lordotic responsiveness: Requirement for hypothalamic action potentials. Brain Research, 268, 67-78. ; Helena, C. V., Toporikova, N., Kalil, B., Stathopoulos, A. M., Pogrebna, V. V., Carolino, R. O., ⋯ Bertram, R. (2015). KNDy neurons modulate the magnitude of the steroid-induced luteinizing hormone surges in ovariectomized rats. Endocrinology, 156, 4200-4213. ; Henderson, S. R., Baker, C., & Fink, G. (1977). Effect of oestradiol-17β exposure on the spontaneous secretion of gonadotropins in chronically gonadectomized rats. Journal of Endocrinology, 73, 455-462. ; Hoffman, J. C. (1967). Effects of light deprivation on the rat estrous cycle. Neuroendocrinology, 2, 1-10. ; Kalantaridou, S. N., Makrigiannakis, A., Zoumakis, E., & Chrosu, G. P. (2004). Stress and the female reproductive system. Journal of Reproductive Immunology, 62, 61-68. ; Kalló, I., Vida, B., Bardóczi, Z., Szilvásy-Szabo, A., Rabi, F., Molnár, T., ⋯ Liposits, Z. (2013). Gonadotropin-releasing hormone neurons innervate kisspeptin neurons in the female mouse brain. Neuroendocrinology, 98, 281-289. ; Kawakami, M., Arita, J., & Yoshioka, E. (1980). Loss of estrogen-induced daily surges of prolactin and gonadotropins by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology, 106, 1087-1092. ; Kawakami, M., & Terasawa, E. (1972). Acute effect of neural deafferentation on timing of gonadotropin secretion before proestrus in the female rat. Endocrinologia Japonica, 19, 449-459. ; Kawakami, M., Terasawa, E., & Ibuki, T. (1970). Changes in multiple unit activity of the brain during the estrous cycle. Neuroendocrinology, 6, 30-48. ; Kazim, S. F., Enam, S. A., & Shamim, M. S. (2010). Possible detrimental effects of neurosurgical irrigation fluids on neural tissue: An evidence based analysis of various irrigants used in contemporary neurosurgical practice. International Journal of Surgery, 8, 586-590. ; Kennaway, D. J., Boden, M. J., & Voultsios, A. (2004). Reproductive performance in female clockΔ19 mutant mice. Reproduction. Fertility and Development, 16, 801-810. ; Kimura, F., Mitsugi, N., Arita, J., Akema, T., & Yoshida, K. (1987). Effects of preoptic injections of gastrin. Cholecystokinin, secretin, vasoactive intestinal peptide and PHI on the secretion of luteinizing hormone and prolactin in ovariectomized estrogen-primed rats. Brain Research, 410, 315-322. ; Legan, S. J., Coon, G. A., & Karsch, F. J. (1975). Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology, 96, 50-56. ; Legan, S. J., & Karsch, F. J. (1975). A daily signal for the LH surge in the rat. Endocrinology, 96, 57-62. ; Lucas, R. J., Stirland, J. A., Darrow, J. M., Menakerm, M., & Loudon, A. S. (1999). Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology, 140, 758-764. ; Meyer-Bernstein, E. L., Jetton, A. E., Matsumoto, S., Maruns, J. F., Lehman, M. N., & Bittman, E. L. (1999). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology, 140, 207-218. ; Miller, B. H., & Takahashi, J. S. (2013). Central circadian control of female reproductive function. Frontiers in Endocrinology, 4, 195. ; Mintz, E. M., Marvel, C. L., Gillespie, C. F., Price, K. M., & Albers, H. E. (1999). Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. Journal of Neuroscience, 19, 5124-5130. ; Mittelman-Smith, M. A., Krajewski-Hall, S. J., McMullen, N. T., & Rance, N. E. (2016). Ablation of KNDy neurons results in hypogonadotropic hypogonadism and amplifies the steroid-induced LH surge in female rats. Endocrinology, 157, 2015-2027. ; Miyajima, M., Shimoji, K., Watanabe, M., Nakajima, M., Ogino, I., & Arai, H. (2012). Role of cerebrospinal fluid as perfusate in neuroendoscopic surgery: A basic investigation. Acta Neurochirurgica. Supplement, 113, 103-107. ; Mori, K., Takuji, Y., Masahiro, M., Yasukazu, H., Nobuhiro, K., & Yasuaki, N. (2013). Potential risk of artificial cerebrospinal fluid solution without magnesium ion for cerebral irrigation and perfusion in neurosurgical practice. Neurologia Medico-Chirurgica, 53, 596-600. ; Nequin, L. G., Alvarez, J. A., & Campbell, C. S. (1975). Alterations in steroid and gonadotropin release resulting from surgical stress during the morning of proestrus in 5-day cyclic rats. Endocrinology, 97, 718-724. ; Ohkura, S., Uenoyama, Y., Yamada, S., Homma, T., Takase, K., Inoue, N., ⋯ Tsukamura, H. (2009). Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides, 30, 49-56. ; Oka, K., Yamamoto, M., Nonaka, T., & Tomonaga, M. (1996). The significance of artificial cerebrospinal fluid as perfusate and endoneurosurgery. Neurosurgery, 38, 733-736. ; Okamoto, M. T., Nobunaga, T., & Suzuki, Y. (1972). Delay in ovulation with pentobarbital anesthesia applied at various stages of the 4-day cyclic rat. Endocrinologica Japonica, 19, 11-17. ; Padilla, S. L., Perez, J. G., Ben-Hamo, M., Johnson, C. W., Sanchez, R. E. A., Bussi, I. L., ⋯ De la iglesia, H. O. (2019). Kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism. Current Biology, 29, 592-604.e4. ; Palm, I. F., van der Beek, E. M., Wiegant, V. M., Buijs, R. M., & Kalsbeek, A. (1999). Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience, 93, 659-666. ; Palm, I. F., van der Beek, E. M., Wiegant, V. M., Buijs, R. M., & Kalsbeek, A. (2001). The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Research, 901, 109-116. ; Pasantes-Morales, H., & Tuz, K. (2006). Volume changes in neurons: Hyperexcitability and neuronal death. Contributions to Nephrology, 152, 221-240. ; Paul, K. N., Gamble, K. L., Fukuhara, C., Novak, C. M., Tosini, G., & Albers, H. E. (2004). Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels. European Journal of Neuroscience, 19, 2808-2814. ; Paxinos, G., & Watson, C. (2014). The Rat Brain in Stereotaxic Coordinates (7th Ed). Academic Press. ; Pereira de Vasconcelos, A., Klur, S., Muller, C., Cosquer, B., López, J., Certa, U., & Cassel, J. C. (2006). Reversible inactivation of the dorsal hippocampus by tetrodotoxin or lidocaine: A comparative study on cerebral functional activity and motor coordination in the rat. Neuroscience, 141, 1649-1663. ; Pollard, I., White, B. M., Bassett, J. R., & Cairncross, K. D. (2004). Plasma glucocorticoid elevation and desynchronization of the estrous cycle following unpredictable stress in the rat. Behavioral Biology, 14, 103-108. ; Raisman, G., & Brown-Grant, K. (1977). The “suprachiasmatic syndrome”: Endocrine and behavioral abnormalities following lesions of the suprachiasmatic nuclei in the female rat. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198, 297-314. ; Ramirez, V. D., & Sawyer, C. H. (1974). Differential dynamic responses of plasma LH and FSH to ovariectomy and to a single injection of estrogen in the rat. Endocrinology, 94, 987-993. ; Richards, J. S., Russell, D. L., Robker, R. L., Dajee, M., & Alliston, T. N. (1998). Molecular mechanisms of ovulation and luteinization. Molecular and Cellular Endocrinology, 145, 47-54. ; Robertson, J. L., Clifton, D. K., de la Iglesia, H. O., Steiner, R. A., & Kauffman, A. S. (2009). Circadian regulation of Kiss1 neurons: Implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology, 150, 3664-3671. ; Rothfeld, J. M., Harlan, R. E., Shivers, B. D., & Pfaff, D. W. (1986). Reversible disruption of lordosis via midbrain infusions of procaine and tetrodotoxin. Pharmacology, Biochemistry and Behavior, 25, 857-863. ; Rusell, D. L., & Robker, R. L. (2007). Molecular mechanisms of ovulation: Co-ordination through the cumulus complex. Human Reproduction Update, 13, 289-312. ; Saeb-Parsy, K., Lombardelli, S., Khan, F. Z., McDowal, K., Au-Yong, I. T., & Dyball, R. E. (2000). Neural connections of hypothalamic neuroendocrine nuclei in the rat. Journal of Neuroendocrinology, 12, 635-648. ; Sandford, L. D., Yang, L., Tang, X., Ross, R. J., & Morrison, A. R. (2005). Tetrodotoxin inactivation of pontine regions: Influence on sleep-wake states. Brain Research, 1044, 42-50. ; Schwartz, N. B., & Lawton, I. E. (1968). Effects of barbiturate injection on the day before proestrous in the rat. Neuroendocrinology, 3, 9-17. ; Schwartz, W. J., Gross, R. A., & Morton, M. T. (1987). The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proceedings of the National Academy of Sciences, USA, 84, 1694-1698. ; Seegal, R. F., & Goldman, B. D. (1975). Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biology of Reproduction, 12, 223-231. ; Sharp, J. L., Zammit, T. G., & Lawson, D. M. (2002). Stress-like responses to common procedures in rats: Effect of the estrous cycle. Journal of the American Association for Laboratory Animal Science, 41, 15-22. ; Shibata, S., & Moore, R. Y. (1993). Tetrodotoxin does not affect circadian rhythms in neuronal activity and metabolism in rodent suprachiasmatic nucleus in vitro. Brain Research, 606, 259-266. ; Simodian, S. X., Spratt, D. P., & Herbison, A. E. (1999). Identification and characterization of estrogen receptor α-containing neurons projecting to the vicinity of the Gonadotropin-Releasing Hormone perikarya in the Rostral Preoptic Area of the rat. Journal of Comparative Neurology, 411, 346-358. ; Smarr, B. L., Gile, J. J., & de la Iglesia, H. O. (2013). Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in the female rats: Possible role as an integrator for circadian and ovarian signals timing the luteinizing hormone surge. Journal of Neuroendocrinology, 25, 1273-1279. ; Stetson, M. H., Watson-Whitmyre, M., Dipinto, M. N., & Smith, S. G. (1981). Daily luteinizing hormone release in ovariectomized hamsters: Effect of barbiturate blockade. Biology of Reproduction, 24, 139-144. ; van der Beek, E. M., Horvath, T. L., Wiegant, V. M., Van der Hurk, R., & Buijs, R. M. (1997a). Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology, 384, 569-579. ; van der Beek, E. M., van Oudheusden, H. J., Buijs, R. M., van der Donk, H. A., van der Hurk, R., & Wiegant, V. M. (1994). Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology, 134, 2636-2644. ; van der Beek, E. M., Wiegant, V. M., van der Donk, H. A., van der Hurk, R., & Buijs, R. M. (1993). Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotropin-releasing hormone neurons in the female rat. Journal of Neuroendocrinology, 5, 137-144. ; van der Beek, E. M., Wiegant, V. M., van Oudheusden, H. J., van der Donk, H. A., van den Hurk, R., & Buijs, R. M. (1997b). Synaptic contacts between gonadotropin-releasing hormone-containing fibers and neurons in the suprachiasmatic nucleus and perichiasmatic area: An anatomical substrate for feedback regulation? Brain Research, 755, 101-111. ; Vida, B., Deli, L., Hrabovszky, E., Kalamantianos, T., Caraty, A., Coen, C. W., ⋯ Kalló, I. (2010). Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: Regulation by oestrogen. Journal of Neuroendocrinology, 22, 1032-1039. ; Wakabayashi, Y., Nakada, T., Murata, K., Ohkura, S., Mogi, K., Navarro, V. V., ⋯ Okamura, H. (2010). Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. Journal of Neuroscience, 30, 3124-3132. ; Wiegand, S. J., & Terasawa, E. (1982). Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology, 34, 395-404. ; Williams, W. P., Jarjisian, S. G., Mikkelsen, J. D., & Kriegsfeld, L. J. (2011). Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology, 152, 595-606. ; Wirtshafter, D., Asin, K., & Kent, E. W. (1979). Simple technique for midline stereotaxic surgery in the rat. Physiology & Behavior, 23, 409-410. ; Yi, C. X., van der Vliet, J., Dai, J., Yin, G., Ru, L., & Buijs, R. M. (2006). Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology, 147, 283-294. ; Zhuravin, I. A., & Bures, J. (1991). Extent of the tetrodotoxin induced blockade examined by pupillary paralysis elicited by intracerebral injection of the drug. Experimental Brain Research, 83, 687-690.
  • Grant Information: IN216015 International DGAPA-PAPIIT; 236908 International CONACyT
  • Contributed Indexing: Keywords: oestrous cycle; ovulation; suprachiasmatic nucleus
  • Substance Nomenclature: 0 (Chorionic Gonadotropin) ; 4368-28-9 (Tetrodotoxin)
  • Entry Date(s): Date Created: 20191127 Date Completed: 20210728 Latest Revision: 20210728
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -